注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络计算机科学理论与基础知识基于境脉感知的同伴推荐研究(英文)

基于境脉感知的同伴推荐研究(英文)

基于境脉感知的同伴推荐研究(英文)

定 价:¥36.00

作 者: 郑燕林 著
出版社: 吉林大学出版社
丛编项:
标 签: 计算机理论

购买这本书可以去


ISBN: 9787560150413 出版时间: 2009-12-01 包装: 平装
开本: 16开 页数: 202 字数:  

内容简介

  This book is organized as follows. Chapter 1 introduces the research background and purposes of this study. Chapter 2 recognizes the theoretical foundations for this study. Chapter 3 explores the e-learning context.Chapter 4 discusses peer interaction in the e-learning context, and suggests that effective peer interaction should be built on the considerations of knowledge relevance, social proximity and technical access between participants. Chapter 5 proposes a three-dimensional CA model for peer recommendation. Chapter 6 describes a CA-supported peer recommendation mechanism, which is based on mining learners activity contexts in e-learning spaces. Chapter 7 presents a prototype case study (PeerFinder), which implements CA in a weblog system. Further discussion is provided in Chapter 8.

作者简介

  郑燕林,女,1974年10月15日生,1997年获东北师范大学理学士,2000年获东北师范大学教育学硕士学位,2002年获日本文部省奖学金公派留学日本,于2006年获得日本国立德岛大学信息系统工学博士学位。自2000年在东北师范大学任教。现为东北师范大学传媒科学学院教育技术学系副教授、副系主任、硕士生导师。目前主要从事CSCL、泛在学习(ubiquitous learning)系统设计与开发、网络环境下知识管理能力发展相关研究。近年来,共发表中英文学术论文50余篇,其中包括SSCI、EI、ISTP、CSSCI检索论文。

图书目录

Chapter 1 Introduction
1.1 Research Background
1.2 Purpose of this Study
1.3 Book Overview
Chapter 2 Theoretical Foundation of this Study
2.1 Social Constructivism Theory
2.2 Social Information Processing Theory
2.3 Activity Theory
Chapter 3 The e-Learning Context
3.1 Two Concepts
3.1.1 Context
3.1.2 e-Learning
3.2 Framework Description of the e-Learning Context
3.2.1 Key Elements in e-Learning
3.2.2 Learning Process based on Knowledge Transfer
3.2.3 Knowledge Goals of e-Learning
3.3 Knowledge Context
3.4 Social Context
3.5 Technical Context
3.6 Mediator: Activity Context
3.7 Modeling Knowledge, Social, Technical Contexts
Chapter 4 Peer Interaction in the e-Learning Context
4.1 Interaction
4.2 Peer Interaction
4.3 Computer-Mediated Communication
4.4 Computer-supported Collaborative Learning
4.5 Virtual Learning Community
4.6 Support Potential Online Peer Interaction
4.6.1 Knowledge Relevance
4.6.2 Social Proximity
4.6.3 Technical Mediation
4.7 Motivation and Engagement in Peer Interaction
Chapter 5 Three-dimensional Context-awareness Model for Peer Recommendation
5.1 Literatures on Awareness
5.1.1 The Concept of Awareness
5.1.2 Classifications of Awareness
5.1.3 Awareness Models
5.1.4 Awareness Technology
5.1.5 Knowledge Awareness
5.1.6 Context-awareness and its Applications
5.2 Three-dimensional Context-awareness Model for Peer Recommendation
5.2.1 CA to Knowledge Relevance
5.2.2 CA to Social Proximity
5.2.3 CA to Technical Access
5.3 A Case Study of Learners Percepti9ns toward the CA Model
5.3.1 Methodology
5.3.2 Results of Questionnaires
5.3.3 Findings
Chapter 6 Context-awareness Supported Peer Recommendation Mechanism based on Mining Activity Context
6.1 Literacy Review on Recommender Systems
6.1.1 Information Filtering
6.1.2 Content-based Approach for Recommendation
6.1.3 Collaborative Filtering Approach for Recommendation
6.1.4 SNA-based Approach for Recommendation
6.1.5 Cold-start Problem in Recommender Systems
6.1.6 Recommender System Assessment
6.2 Context Management
6.3 Activity Context
6.3.1 Classifications of Activity Contexts
6.3.2 Modeling Learning Activity Context
6.3.3 Content Analysis of Learning Activity
6.4 Framework Description of CA-supported Peer Recommendation Mechanism
6.5 User Modeling
6.6 Context Monitoring
6.7 Context Filtering
6.8 CA Visualization
6.8.1 Information Visualization
6.8.2 Social Visualization
6.8.3 CA Visualization
Chapter 7 A Case Study: PeerFinder
7.1 Social Media
7.2 Weblogs as the Test-bed
7.3 The Design Space for Helping Learners Find Suitable Helpers
7.4 System Configuration of PeerFinder
7.5 Learning Activity Contexts in Weblogs
7.6 Content Analysis in PeerFinder
7.7 Recommendation Flow of PeerFinder
7.8 Basis Strategies for Context Filtering in PeerFinder
7.9 Mining Technical Context
7.10 Indicators for CA Filtering
7.11 Computing the Similarity among Learners
Chapter 8 Discussions
8.1 The Extensibility and Flexibility of the CA Model
8.2 The Feasibility and Validity of the CA-supported Peer Recommendation Mechanism
8.3 More Than Peer Recommendation
8.3.1 Inspiration for the Construction of Learning Resources
8.3.2 Decreasing the Learning Curve of New Learners
8.3.3 Motivating Active and Potential Peer Interaction
8.3.4 Inspirations for the Cultivation and hnprovement of Online Learners Learning Ability
Chapter 9 Conclusions and Future Research
9.1 Conclusions
9.2 Future Research
Bibliography

本目录推荐