《非标准支持向量机》首先介绍了引领最优化方法应用研究的一些新的内容,包括锥规划和鲁棒优化,这是其进一步研究新的支持向量机的最优化基础;介绍了标准支持向量机处理有监督学习问题(分类问题)的基本思想及相应模型;之后则是作者的一系列研究成果:例如基于支持向量分类机的半监督和无监督两分类算法,训练数据在对称多面体扰动情况下、一般多面体扰动情况下、椭球体内扰动情况下的半监督和无监督两分类算法,以及相应的理论分析等。《非标准支持向量机》的读者对象主要是具有一定优化基础并对于支持向量机有一定了解的人士。对于支持向量机的引入等相关基础知识,《非标准支持向量机》只为体系完善而做了简要介绍。《非标准支持向量机》各章的主要内容如下:第一章介绍线性锥优化和鲁棒优化的基础知识;第二章介绍支持向量分类机的基本思想及相应各种模型;第三章介绍基于支持向量分类机的无监督和半监督两分类算法;第四章介绍数据(样本)在对称多面体内扰动的无监督和半监督两分类算法;第五章则是介绍数据在一般多面体内扰动的无监督和半监督两分类算法;第六章介绍数据在椭球体内扰动的无监督和半监督两分类算法。