在信息时代,存储大量数据比较容易。通过Web、企业内部网、电传新。闻获得的文本数量在急剧增加,这导致信息过载。然而,数据量虽然增加了,但可用的信息却在减少。文本挖掘是一个新的令人振奋的研究领域,其试图通过综合数据挖掘、机器学习、自然语言处理、信息检索和知识管理等技术来解决信息过载问题。文本挖掘包括文本集合的预处理(文本分类、信息抽取)、中间结果存储、中间结果分析技术(分布分析、聚类、趋势分析、关联规则抽取)和最终结果的可视化。它与关联分析类似,为人们提供了分析海量文本数据的新工具,并且通过学习模式来指导抽取实体关系。本书首先讨论了文本挖掘的总体结构以及文本挖掘预处理算法,然后深入地研究了文本挖掘核心操作,最后探讨真实世界中文本挖掘的主要应用和DIAL,弥补了理论和实践的脱节。本书主要可供对文本挖掘感兴趣的本科高年级学生、研究生、研究人员和专业开发人员参考,对从事文本挖掘开发和使用文本挖掘系统的人也会有很大帮助。