前言
第1章 有限群的性质
1.1 群的定义
1.2 群的简单性质
1.3 置换群Sn
1.4 表示和表示空间
1.5 可约表示和完全可约表示
1.6 Schur引理
1.7 正交性定理及其扩充
1.8 完备算符集
1.9 有限群不可约表示的基本性质
1.10 共轭类的个数s与不等价不可约表示个数s’之间的关系
?2章 有限群表示的分解技巧及应用
2.1 群Sn元素的分类
2.2 S3群的不可约表示
2.3 杨算子的一般性质
2.4 正规表示的约化
2.5 利用杨算子求不可约表示的实例
2.6 一维能带结构
2.7 能带结构及能隙概念
2.8 二维及三维晶体能带结构
第3章 Su(2)群
3.1 SO(3)群的性质
3.2 SU(2)群及其Lie代数
3.3 表示的初步讨论
3.4 SU(2)群表示的性质
3.5 权与表示空间的维数
3.6 不可约表示空间的耦合
3.7 直积表示的分解
第4章 SU(3)群及有关问题
4.1 SU(3)群的基本性质
4.2 Lie群的一般特性
4.3 素根图与Lie代数的关系
4.4 权和既约表示
4.5 直积分解与杨图
4.6 填字杨图和盖尔范德符号
第5章 紧致群上的积分
5.1 SU(2)群上的不变测?
5.2 Mφller-Cartan方程
5.3 紧致群表示的完全可约性
5.4 微分几何及纤维丛的概念
5.5 半单Lie群的不变测度
5.6 特征的计算
5.7 计算Lie群特征标的Weyl方法
第6章 Lie超代数
6.1 Lie超代数的Cartan矩阵
6.2 Lie超代数及其子代数
6.3 超子代数及其Dynkin图
6.4 Lie超代数sp(m+1,n+1)
6.5 正交辛Lie超代数
6.6 非扭转和扭转代数
6.7 Lie超代数及仿射Lie超代数的折叠方法
附录 Galois理论简介
参考文献
后记