what happens when ordinary matter is sogreatly compressed that the electrons form a relativisticdegenerate gas, as in a white dwarf star? what happens when thematter is compressed even further so that atomic nuclei overlap toform superdense nuclear matter, as in a neutron star? what happenswhen nuclear matter is heated to such great temperatures that thenucleons and pions melt into quarks and gluons, as in high-energynuclear collisions? what happened in the spontaneous symmetrybreak-ing of the unified theory of the weak and electromagneticinteractions during the big bang? questions like these havefascinated us for a long time. the purpose of this book is todevelop the fundamental principles and mathematical techniques thatenable the formulation of answers to these mind-boggling questions.the study of matter under extreme con-ditions has blossomed into afield of intense interdisciplinary activity and global extent. theanalysis of the collective behavior of interacting rela-tivisticsystems spans a rich palette of physical phenomena. one of theultimate goals of the whole program is to map out the phase diagramof the standard model and its extensions. this text assumes that the reader has completed graduate levelcourses in thermal and statistical physics and in relativisticquantum field theory.our aims are to convey a coherent picture ofthe field and to prepare the reader to read and understand theoriginal and current literature. the book is not, however, acompendium of all known results; this would havemade itprohibitively long. we start from the basic principles ofquantumfield theory, thermodynamics, and statistical mechanics.this develop-ment is most elegantly accomplished by means offeynman's functionalintegral formalism. having a functionalintegral expression for the parti-tion function allows astraightforward derivation of diagrammatic rules for interactingfield theories. it also provides a framework for defining gaugetheories on finite lattices, which then enables integration bymonte carlo techniques. the formal aspects are illustrated withapplications drawn from fields of research that are close to theauthors' own experience. eachchapter carries its own exercises,reference list, and select bibliography.the book is based onfinite-temperature field theory, written by one of us (jk) andpublished in 1989. although the fundamental principles have notchanged, there have been many important developments since then,necessitating a new book.