张霞的这本《粒度计算在数据挖掘中的应用研究》对模糊粒度计算在文本软聚类中的应用进行了深入研究,提出了一种基于模糊粒度计算的聚类方法,并且利用该聚类方法对K-means算法进行了优化。基于模糊粒度计算的聚类是通过归一化的距离函数将聚类问题映射到距离空间,调节粒度产生对文本集合D的动态聚类划分。动态聚类既可以作为一个单独的聚类结果,也可以作为其他算法的一个预处理步骤。K-means算法是一种经典的聚类算法,速度快、消耗资源小,但是算法对初始聚类中心点敏感,容易陷入局部最小值。《粒度计算在数据挖掘中的应用研究》将基于模糊粒度计算的聚类方法作为K-means算法的预处理步骤,实验结果证明,这种预处理有效地消除了K-means算法的初始值敏感问题,优化了K-means算法。