注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学力学细胞力学进展(英文版)

细胞力学进展(英文版)

细胞力学进展(英文版)

定 价:¥89.00

作 者: 李少凡 等主编
出版社: 高等教育出版社
丛编项:
标 签: 力学

购买这本书可以去


ISBN: 9787040317305 出版时间: 2011-05-01 包装: 精装
开本: 16开 页数: 284 字数:  

内容简介

  《细胞力学进展》(英文版)从交叉学科的角度系统地介绍和总结了细胞力学和细胞物理研究领域的前沿课题和最新进展。其显著的特点是用分子力学和复杂连续介质力学的方法研究和计算细胞的演变和分化;将定量的数学力学分析方法与实验手段相结合来探讨细胞的生物物理特性。《细胞力学进展》(英文版)适合作为从事分子生物学、生物工程和力学、软物质力学和物理、计算力学,以及生物化学和医学的科研人员和研究生的参考书。《细胞力学进展》(英文版)的主编是美国加州大学伯克利分校的李少凡教授和南非科学院院士、开普半岛科技大学的孙博华教授。

作者简介

暂缺《细胞力学进展(英文版)》作者简介

图书目录

Chapter 1 Modeling and Simulations of the Dynamics of Growing CellClusters 1.1 Introduction 1.2 Single cell geometry and kinematics 1.2.1 The continuum model 1.2.2 The numerical model for the cell geometry 1.3 Single cell equilibrium and material model 1.3.1 Cell equilibrium 1.3.2 The material model 1.3.3 Determination of material constants 1.4 Modeling cell interactions 1.4.1 Cell-to-cell contact 1.4.2 Cell-to-cell adhesion 1.4.3 Cell-to-cell interaction test 1.5 Modeling the cell life cycle 1.6 Details of the numerical implementation 1.6.1 The finite element model 1.6.2 Contact/adhesion interface detection 1.6.3 Time integration 1.6.4 Parallelization 1.7 Numerical results 1.8 Summary and conclusions ReferencesChapter 2 Multiscale Biomechanical Modeling of StemCell-Extracellular Matrix Interactions 2.1 Introduction 2.2 Cell and ECM modeling 2.2.1 Basic hypothesis and assumptions 2.2.2 Hyperelastic model 2.2.3 Liquid crystal model 2.3 Contact and adhesion models for cell-substrateinteractions 2.3.1 The adhesive body force with continuum mechanics contact 2.3.2 The cohesive contact model 2.4 Meshfree Galerkin formulation and the computationalalgorithm 2.5 Numerical simulations 2.5.1 Validation of the material rhodels 2.5.2 Cell response in four different stiffness substrates 2.5.3 Cell response to a stiffness-varying substrate 2.5.4 Comparison of two different contact algorithms 2.5.5 Three-dimensional simulation of cell spreading 2.6 Discussion and conclusions ReferencesChapter 3 Modeling of Proteins and Their Interactions with Solvent 3.1 Introduction 3.2 Classical molecular dynamics 3.2.1 Coarse-grained model 3.2.2 High performance computing 3.3 Principal component analysis 3.3.1 Three oscillators system analysis with PCA 3.3.2 Quasi-harmonic analysis 3.3.3 Equilibrium conformational analysis 3.4 Methods and procedures 3.4.1 Framework 3.4.2 Overlap coefficients 3.4.3 Correlation analysis 3.4.4 PCA with MD simulation 3.4.5 Kabsch algorithm 3.4.6 Positional correlation matrix 3.4.7 Cluster analysis 3.5 MD simulation with T4 lysozyme 3.5.1 Equilibration measures 3.5.2 Fluctuation analysis 3.5.3 Mode selection and evaluation 3.5.4 Eigenvalue analysis 3.5.5 Overlap evaluation 3.5.6 Identification of slow conformational flexibility 3.5.7 Correlation analysis of T4 lysozyme 3.6 Hemoglobin and sickle cell anemia 3.6.1 Molecular dynamic simulation with NAMD 3.6.2 Conformational change analysis 3.6.3 PCA analysis 3.6.4 Correlation analysis with HbS interaction 3.7 Conclusion ReferencesChapter 4 Structural, Mechanical and Functional Properties ofIntermediate Filaments from the Atomistic to the Cellular Scales 4.1 Introduction 4.1.1 Hierarchical structure of vimentin intermediatefilaments 4.1.2 The structural and physiological character of keratin 4.2 Connecting filaments to cells level function and pathology 4.2.1 Bending and stretching properties of IFs in cells 4.2.2 IFs responding differently to tensile and shear stresses 4.2.3 Mechanotransduction through the intermediate filamentnetwork 4.3 Experimental mechanics 4.3.1 Single filament mechanics 4.3.2 Rheology of IF networks in vitro 4.3.3 IF networks rheology in cells 4.4 Case studies 4.4.1 Single vimentin filament mechanics 4.4.2 Network mechanics 4.4.3 The mechanical role of intermediate filament in cellularsystem 4.5 Conclusion ReferencesChapter 5 Cytoskeletal Mechanics and Rheology 5.1 Introduction 5.2 Modelling semiflexible filament dynamics 5.3 Experimental measurements 5.3.1 Glass microneedles 5.3.2 Cell poking 5.3.3 Atomic force microscopy 5.3.4 Micropipette aspiration 5.3.5 Microplates 5.3.6 Parallel-plate flow chambers 5.3.7 Optical tweezers 5.3.8 Magnetic traps 5.4 Computational models 5.5 Conclusion ReferencesChapter 6 On the Application of Multiphasic Theories to theProblem of Cell-substrate Mechanical Interactions 6.1 Introduction 6.2 The physics of contractile fibroblasts and theirinteractions with an elastic substrate 6.2.1 Cell spreading, contractility and substrate elasticity 6.2.2 Molecular mechanisms of cell contractility 6.3 Multiphasic mixture theory and cell contractility 6.3.1 The cytoplasm as a quadriphasic medium 6.3.2 Mass transport and mass exchange within the cell 6.3.3 Contractility and force balance 6.3.4 Model's prediction for simple cases 6.4 Interaction between contractile cells and compliantsubstrates 6.4.1 Two-dimensional plane stress formulation 6.4.2 Numerical strategy: XFEM-level methods 6.4.3 Analysis of mechanical interactions between acontractile cell and an elastic substrate 6.5 Summary and conclusion 6.5.1 Summary 6.5.2 Limitations of the multiphasic approach 6.5.3 Concluding remark ReferencesChapter 7 Effect of Substrate Rigidity on the Growth of NascentAdhesion Sites 7.1 Introduction 7.2 Model 7.3 Results and Discussion 7.4 Conclusion ReferencesChapter 8 Opto-Hydrodynamic Trapping for Multiaxial Single-CellBiomechanics 8.1 Introduction 8.2 Optical-hydrodynamic trapping. 8.2.1 Optical physics and microfluidics 8.2.2 Theoretical stress analysis 8.2.3 Experimental and computational flow validation 8.2.4 Applied stresses and strain response 8.2.5 Multiaxial single-cell biomechanics 8.3 Discussion ReferencesChapter 9 Application of Nonlocal Shell Models to MicrotubuleBuckling in Living Cells 9.1 Introduction 9.2 Nonlocal shell theories 9.2.1 Constitutive relations 9.2.2 Shear deformable shell model 9.2.3 Thin shell model 9.3 Bending buckling analysis 9.4 Numerical results and discussion 9.5 ConclusionsAppendix AAppendix BAppendix CAppendix DReferences

本目录推荐