1.An Outline of What Computational Chemistry Is All About
1.1 What You Can Do with Computational Chemistry,
1.2 The Tools of Computational Chemistry
1.3 Putting It All Together
1.4 The Plulosophy of Computational Chemistry
1.5 Summary
References
Easier Questions
Harder Questions
2.The Concept of the Potential Energy Surface
2.1 Perspective
2.2 Stationary Points
2.3 The Born-Oppenheimer Approximation
2.4 Geometry Optimization
2.5 Stationary Points and Normal-Mode Vibrations - Zero PointEnergy
2.6 Symmetry
2.7 Summary
References
Easier Questions
Harder Questions
3.Molecular Mecbanics
3.1 Perspective
3.2 The Basic Principles of Molecular Mechanics
3.2.1 Developing a Forcefield
3.2.2 Parameterizing a Forcefield
3.2.3 A Calculation Using Our Forcefield
3.3 Examples of the Use of Molecular Mechanics
3.31 To Obtain Reasonable Input Geometries for Lengthier(Ab Initio,Semiempirical or Density Functional) Kinds of Calculations
3.3.2 To Obtain Good Geometries (and Perhaps Energies)for Small- toMedium-Sized Molecules
3.3.3 To Calculate the Geometries and Energies of Very LargeMolecules, Usually Polymeric Biomolecules (Proteins andNucleicAcids)
3.3.4 To Generate the Potential Energy Function Under WhichMolecules Move, for Molecular Dynamics or Monte CarloCalculations
3.3.5 As a (Usually Quick) Gu ide to the Feasibility of, or LikelyOutcome of, Reactions in Organic Synthesis
3.4 Geometries Calculated by MM
3.5 Frequencies and Vibrational Spectra Calculated by MM
3.6 Strengths and Weaknesses of Molecular Mechanics
3.61 Strengths
3.62 Weaknesses
3.7 Summary
References
Easier Questions
Harder Questions
4 Introduction to Quantum Mechanics in ComputationalChemistry
4.1 Perspective
4.2 The Development of Quantum Mechanics The Schrodinger Equation,
4.2.1 The Origins of Quantum Theory: Blackbody Radiation and thePhotoelectric Effect
4.2.2 Radioactivity
4.2.3 Relativity
4.2.4 The Nuclear Atom
4.2.5 The Bohr Atom N
4.2.6 The Wave Mechanical Atom and the Schrodinger Equation
4.3 The Application of the Schrodinger Equation to Chemistry byHuckel
4.3.1 Introduction
4.3.2 Hybridization
4.3.3 Matrices and Determinants
4.3.4 The Simple Huckel Method - Theory
4.3.5 The Simple Huckel Method - Applications
4.3.6 Strengths and Weaknesses of the Simple Huckel Method
4.3.7 The Determinant Method of Calculating the Huckel c's andEnergy Levels
4.4 The Extended Huckel Method
4.4.1 Theory
4.4.2 An Illustration of the EHM: the Ptotonated HeliumMolecule
4.4.3 The Extended Huckel Method - Applications
4.4.4 Strengths and Weaknesses of the Extended Huckel Method
4.5. Summary
References
Easier Questions
Harder Questions
5 Ab initio Calculations,N
5.1 Perspective N N
5.2 The Basic Ptinciples of the Ab initio Method
5.2.1 Preliminaries
5.2.2 The Hartree SCF Method
5.2.3 The Hartree-Fock Equations
5.3 Basis Sets
5.3.1 Introduction
5.3.2 Gaussian Functions; Basis Set Preliminaries; Direct SCF
5.3.3 Types of Basis Sets and Their Uses
5.4 Post-Hartree-Fock Calculations: Electron Correlation
5.4.1 Electron Correlation
5.4.2 The MOller-Plesset Approach to Electron Correlation
5.4.3 The Configuration Interaction Approach To ElectronCorrelation - The Coupled Cluster Method
5.5 Applications of the Ab initio Method
5.5.1 Geometries
5.5.2 Energies
5.5.3 Frequencies and Vibrational Spectra
5.5.4 Properties Arising from Electron Distribution: DipoleMoments, Charges, Bond Orders, Electrostatic Potentials,
Atoms-in-Molecules (AIM)
5.5.5 Miscellaneous Properties - UV and NMR Spectra, IonizationEnergies, and Electron Affinities
5.5.6 Visualhation
5.6 Strengths and Weaknesses of Ab initio Calculations
5.6.1 Strengths
5.6.2 Weaknesses
5.7 Summary
References N
Easier Questions
Harder Questions
……
6 Semiempirical Calculations
7 Density Functional Calculations
8 Some \Special\ Topics: Solvation, Singlet Diradicals, A Note onHeavy Atoms and Transition Metals
9 Selected Literature Highlights, Books, Websites, Software andHardware
Answers
Index