本书内容涉及Linlcwood.Palcy理论及其在流体动力学方程中的应用两大部分.其一包含了频率空间的局部化、Besov~lhqflOLittlewood—Paley刻画、Bony的仿积分解及仿线性化技术、新型的Bernstein不等式等.其二在Littlcwood—Palcv理论的框架下,建立输运扩散方程解的时空正则性估计、频谱层次的正则性估计.及零阶Besov空间的log一型估计,给出了既包含对流,也包含扩散现象的流体动力学问题的统一处理方法.在这个新的框架下,重点讨论了不可压的Euler方程与Navier-Stokes方程、Boussinesq方程、临界Quasi—Geostrophic方程及可压的Navier-Stokes方程等.本书的特点是将现代调和分析理论,诸如:频率空间的分析、Fourier局部化技术、Bony的仿积分解及仿线性化技术等和传统的连续模方法、DeGiorgi-Nash.Moser迭代技术相结合,充分利用与开发流体动力学方程内在的几何与代数结构、正交结构、消失条件来研究相应的非线性相互作用。达到在自然临界空间研究流体动力学方程的目的. 本书可供理工科大学数学系、应用数学系的高年级本科生、研究生、教师以及相关的科学工作者阅读参考.