《神经网络结构优化方法及应用》作为一种人工智能领域的新技术,具有优越的非线性映射能力。神经网络以其在模式识别、系统建模等方面的卓越性能,已经广泛应用于许多行业,发挥了很好的作用。本书从RBF网络训练算法、结构分解、结构优化、样本选取等几方面入手,分析了提高神经网络泛化能力和收敛速度的途径与实现方法,提出了快速资源优化网络(FRON)算法、基于粗糙集理论的RBF网络剪枝(RS-RBF)算法、基于多Agent系统设计原理的神经网络结构设计算法(MANN方法),并介绍了神经网络在热工过程预测控制以及设备故障诊断中的应用,结合现场运行及实验数据,给出了应用实例。本书的最后还提供了利用MATLAB软件编写神经网络优化算法的实例,具有较高的实用性。《神经网络结构优化方法及应用》可供从事神经网络设计与应用的工程技术人员、研究人员参考,亦可供高等院校相关专业的教师和学生作为教学参考书。