Preface
1 Introduction
1.1 Introduction
1.2 Schrodinger's Equation
1.3 Eigenfunctions
1.4 Measurement
1.5 Representations
1.5.1 Schrodinger Representation
1.5.2 Heisenberg Representation
1.6 Noncommuting Operators
2 One Dimension
2.1 Square Well
2.2 Linear Potentials
2.3 Harmonic Osallator
2.4 Raising and Lowering Operators
2.5 Exponential Potential
2.5.1 Boun,d State
2.5.2 Contin,uum State
2.6 Delta-Function Potential
2.7 Number of Solutions
2.8 Normalization
2.8.1 Boun,d States
2.8.2 Box Normalization
2.8.3 Delta-Function Normalization
2.8.4 The Limit of Infinite Volume
2.9 Wave Packets
3 Approximate Methods
3.1 WKBJ
3.2 Bound States by WKBJ
3.2.1 Harmonic Oscillator
3.2.2 Morse Potential
3.2.3 Symmetric Ramp
3.2.4 Discontinuous Potentials
3.3 Electron Tunneling
3.4 Variational Theory
3.4.1 Half-Space Potential
3.4.2 Harmonic Oscillator in One Dimension
4 Spin and Angular Momentum
4.1 Operators, Eigenvalues, and Eigenfunctic
4.1.1 Commutation Relations
4.1.2 Raising and Lowering Operators
4.1.3 Eigenfun,aions an,d Eigenvalues
4.2 Representations
4.3 Rigid Rotations
4.4 The Addition ofAngular Momentum
5 Two and Three Dimensions
5.1 Plane Waves in Three Dimensions
5.2 Plane Waves in Two Dimensions
5.3 Central Potentials
5.3.1 Central Potentials in 3D
5.3.2 Central Potential in 2D
5.4 Coulomb Potentials
5.4.1 Bound States
5.4.2 Confluent Hypergeometric Functions
5.4.3 Hydrogen Eigenfunaions
5.4.4 Continuum States
5.5 WKBJ
5.5.1 Three Dimensions
5.5.2 3D Hvdrogen Atom
5.5.3 Two Dimensions
……
6 Matrix Methods and Perturbation Theory
7 Time-Dependent Perturbations
8 Electromagnetic Radiation
9 Many-Particle Systems
10 Scattering Theory
11 Relativistic Quantum Mechanics
Index