注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学力学统计力学(第3版)

统计力学(第3版)

统计力学(第3版)

定 价:¥139.00

作 者: (美)帕斯瑞 著
出版社: 世界图书出版公司
丛编项:
标 签: 力学 自然科学

购买这本书可以去


ISBN: 9787510044120 出版时间: 2012-06-01 包装: 平装
开本: 16开 页数: 718 字数:  

内容简介

  这是一本研究生水平的统计力学经典教材。是以作者多年来在几所大学为研究生授课的讲义为蓝本而写成的。《统计力学(第3版)》初版于1972年,其内容涵盖了统计力学的标准内容,叙述清晰详细,深受读者欢迎。第2版对第1版的内容作了补充和删改,重写了关于相变理论的部分,增加了临界现象的重正化群理论的内容。《统计力学(第3版)》是第3版,增加了一些有关波色—爱因斯坦凝聚态和超冷原子气体的退化费米行为章节和讲述计算模拟方法和早期宇宙热动力学的两章;也增加了化学和相变平衡,扩充讲述了其与散布、量子场、有限尺寸效应和涨落耗散定理的相互关系。希望这个新的版本一如既往地为新一代的学习统计物理的学生提供坚实的基础。每章末增加了注释并附有习题。读者对象:物理学专业的研究生、教师及科研人员。

作者简介

暂缺《统计力学(第3版)》作者简介

图书目录

preface to the third edition
preface to the second edition
preface to the first edition
historical introduction
1. the statistical basis of thermodynamics
 1.1. the macroscopic and the microscopic states
 1.2. contact between statistics and thermodynamics:physicalsignificance of the number (n, v,e)
 1.3. further contact between statistics and thermodynamics
 1.4. the classical ideal gas
 1.5. the entropy of mixing and the gibbs paradox
 1.6. the \correct\ enumeration of the microstates
 problems
2. elements of ensemble theory
 2.1. phase space of a classical system
 2.2. liouville's theorem and its consequences
 2.3. the microcanordcal ensemble
 2.4. examples
 2.5. quantum states and the phase space
 problems
3. the canonical ensemble
 3.1. equilibrium between a system and a heat reservoir
 3.2. a system in the canonical ensemble
 3.3. physical significance of the various statistical quantitiesin the canonical ensemble
 3.4. alternative expressions for the partition function
 3.5. the classical systems
 3.6. energy fluctuations in the canonical ensemble:correspondencewith the microcanonical ensemble
 3.7. two theorems - the \equipartition\ and the \virial\
 3.8. a system of harmonic oscillators
 3.9. the statistics of paramagnetism
 3.10. thermodynamics of magnetic systems:negativetemperatures
 problems
4. the grand canonical ensemble
 4.1. equilibrium between a system and a particle-energyreservoir
 4.2. a system in the grand canonical ensemble
 4.3. physical significance of the various statisticalquantities
 4.4. examples
 4.5. density and energy fluctuations in the grand canonicalensemble: correspondence with other ensembles
 4.6. thermodynamic phase diagrams
 4.7. phase equilibrium and the clausius-clapeyron equation
 problems
5. formulation of quantum statistics
 5.1. quantum-mechanical ensemble theory:the density matrix
 5.2. statistics of the various ensembles
 5.3. examples
 5.4. systems composed of indistinguishable particles
 5.5. the density matrix and the partition function of a system offree particles
 problems
6. the theory of simple gases
 6.1. an ideal gas in a quantum-mechanical microcanonicalensemble
 6.2. an ideal gas in other quantum-mechanical ensembles
 6.3. statistics of the occupation numbers
 6.4. kinetic considerations
 6.5. gaseous systems composed of molecules with internalmotion
 6.6. chemical equilibrium problems
7. ideal bose systems
 7.1. thermodynamic behavior of an ideal bose gas
 7.2. bose-einstein condensation in ultracold atomic gases
 7.3. thermodynamics of the blackbody radiation
 7.4. the field of sound waves
 7.5. inertial density of the sound field
 7.6. elementary excitations in liquid helium ii
 problems
8. ideal fermi systems
 8.1. thermodynamic behavior of an ideal fermi gas
 8.2. magnetic behavior of an ideal fermi gas
 8.3. the electron gas in metals
 8.4. ultracold atomic fermi gases
 8.5. statistical equilibrium of white dwarf stars
 8.6. statistical model of the atom
 problems
9. thermodynamics of the early universe
 9.1. observational evidence of the big bang
 9.2. evolution of the temperature of the universe
 9.3. relativistic electrons, positrons, and neutrinos
 9.4. neutron fraction
 9.5. annihilation of the positrons and electrons
 9.6. neutrino temperature
 9.7. primordial nucleosynthesis
 9.8. recombination
 9.9. epilogue
 problems
10. statistical mechanics of interacting systems:the method ofcluster expansions
 10.1. cluster expansion for a classical gas
 10.2. virial expansion of the equation of state
 10.3. evaluation of the virial coefficients
 10.4. general remarks on cluster expansions
 10.5. exact treatment of the second virial coefficient
 10.6. cluster expansion for a quantum-mechanical system
 10.7. correlations and scattering
 problems
11. statistical mechanics of interacting systems:the method ofquantized fields
 11.1. the formalism of second quantization
 11.2. low-temperature behavior of an imperfect bose gas
 11.3. low-lying states of an imperfect bose gas
 11.4. energy spectrum of a bose liquid
 11.5. states with quantized circulation
 11.6. quantized vortex rings and the breakdown ofsuperfluidity
 11.7. low-lying states of an imperfect fermi gas
 11.8. energy spectrum of a fermi liquid: landau's phenomenologicaltheory
 11.9. condensation in fermi systems
 problems
12. phase transitions: criticality, universality, and scaling
 12.1. general remarks on the problem of condensation
 12.2. condensation of a van der waals gas
 12.3. a dynamical model of phase transitions
 12.4. the lattice gas and the binary alloy
 12.5. ising model in the zeroth approximation
 12.6. ising model in the first approximation
 12.7. the critical exponents
 12.8. thermodynamic inequalities
 12.9. landau's phenomenological theory
 12.10. scaling hypothesis for thermodynamic functions
 12.11. the role of correlations and fluctuations
 12.12. the critical exponents v and
 12.13. a final look at the mean field theory
 problems
13. phase transitions: exact (or almost exact) results for variousmodels
 13.1. one-dimensional fluid models
 13.2. the ising model in one dimension
 13.3. the n-vector models in one dimension
 13.4. the ising model in two dimensions
 13.5. the spherical model in arbitrary dimensions
 13.6. the ideal bose gas in arbitrary dimensions
 13.7. other models
 problems
14. phase transitions: the renormalization group approach
 14.1. the conceptual basis of scaling
 14.2. some simple examples of renormalization
 14.3. the renormalization group: general formulation
 14.4. applications of the renormalization group
 14.5. finite-size scaling
 problems
15. fluctuations and nonequilibrium statistical mechanics
 15.1. equilibrium thermodynamic fluctuations
 15.2. the einstein-smoluchowski theory of the brownianmotion
 15.3. the langevin theory of the brownian motion
 15.4. approach to equilibrium: the fokker-planck equation
 15.5. spectral analysis of fluctuations: the wiener-khintchinetheorem
 15.6. the fluctuation-dissipation theorem
 15.7. the onsager relations
 problems
16. computer simulations
 16.1. introductionand statistics
 16.2. monte carlo simulations
 16.3. molecular dynamics
 16.5. computer simulation caveats
 problems
 appendices
 a. influence of boundary conditions on the distribution of quantumstates
 b. certain mathematical functions
 c. \volume\ and \surface area\ of an n-dimensional sphere ofradius r
 d. on bose-einstein functionse. on fermi-dirac functions
 f. a rigorous analysis of the ideal bose gas and the onset ofbose-einstein condensation
 g. on watson functions
 h. thermodynamic relationships
 i. pseudorandom numbers
 bibliography
 index

本目录推荐