注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学物理学巴拿赫空间中的概率论

巴拿赫空间中的概率论

巴拿赫空间中的概率论

定 价:¥99.00

作 者: (法)李多科斯 著
出版社: 世界图书出版公司
丛编项:
标 签: 概率论与数理统计 数学 自然科学

购买这本书可以去


ISBN: 9787510048050 出版时间: 2012-09-01 包装: 平装
开本: 大16开 页数: 480 字数:  

内容简介

  This book tries to present some of the main aspects of the theory of Probability in Banach spaces, from the foundations of the topic to the latest developments and current research questions. The past twenty years saw intense activity in the study of classical Probability Theory on infinite dimensional spaces. vector valued random variables, boundedness and continuity of ran-dom processes, with a fruitful interaction with classical Banach spaces and their geometry. A large community of mathematicians, from classical probabilists to pure analysts and functional analysts, participated to this common achievement.The recent use of isoperimetric tools and concentration of measure phenomena, and of abstract random process techniques has led today to rather a complete picture of the field. These developments prompted the authors to undertake the writing of this exposition based on this modern point of view.This book does not pretend to cover all the aspects of the subject and of its connections with other fields. In spite of its ommissions, imperfections and errors, for which we would like to apologize, we hope that this work gives an attractive picture of the subject and will serve it appropriately.

作者简介

暂缺《巴拿赫空间中的概率论》作者简介

图书目录

Introduction
Notation
Part 0. Isoperimetric Background and Generalities
Chapter 1. Isoperimetric Inequalities and the Concentration of Measure Phenomenon
1.1 ome Isoperimetric Inequalities on the Sphere, in Gauss Space  and on the Cube
1.2 An Isoperimetric Inequality for Product Measures
1.3 Martingale Inequalities
Notes and References
Chapter 2. Generalities on Banach Space Valued Random Variables and Random Processes
2.1 Banach Space Valued Radon Random Variables
2.2 Random Processes and Vector Valued R,a,ndom Variables
2.3 Symmetric Random Variables and Levy's Inequalities
2.4 Some Inequalities for Real Valued Random Variables 
Notes and References
Part I. Banach Space Valued Random Variables and Their Strong Limiting Properties
Chapter 3. Gaussian Random Variables
3.1 Integrability and Tail Behavior
3.2 Integrability of Gaussian Chaos
3.3 Comparison Theorems
Notes and References
Chapter 4. Rademacher Averages
4.1 Real Rademacher A'verages
4.2 The Contraction Principle
4,3 Integrability and Tail Behavior of Rademacher Series
4.4 Integrability of Rademacher Chaos
4.5 Comparison Theorems
Notes and References
Chapter 5. Stable Random Variables
5.1 R;epresentation of Stable Random Variables
5.2 Integrability and Tail Behavior
5.3 Comparison Theorems
Notes and References
Chapter 6. Sums of Independent Random Variables
6.1 Symmetrization and Some Inequalities for Sums of Independent Random Variables
6.2 Integrability of Sums of Independent Random Variables
6.3 Concentration and Tail Behavior
Notes and R,eferences
Chapter 7. The Strong Law of Large Numbers
7.1 A General Statement for Strong Limit Theorems
7.2 Examples of Laws of Large Numbers
Notes and References
Chapter 8. The Law of the lterated Logarithm
8.1 Kolmogorov's Law of the Iterated Logarithm
8.2 Hartman-Wintner-Strassen's Law of the Iterated Logarithm
8.3 On the Identification of the Limits
Notes and References
Part II. Tightness of Vector Valued R,andom Variables and Regularity of Random Processes
……

本目录推荐