Rafael C.Gonzalez,于福罗里达大学电子工程系获得博士学位,田纳西大学电气和计算机工程系教授,田纳西大学图像和模式分析实验室、机器人和计算机视觉实验室的创始人及IEEE会士。冈萨雷斯博士在模式识别、图像处理和机器人领域编写或与人合著了100多篇技术文章两本书和4本教材,他的书已被世界1000多所大学和研究所采用。
图书目录
Contents Preface Acknowledgements About the Authors 1 Introduction Preview 1.1 Background 1.2 What Is Digital Image Processing? 1.3 Background on MATLAB and the Image Processing Toolbox 1.4 Areas of Image Processing Covered in the Book 1.5 The Book Web Site 1.6 Notation 1.7 Fundamentals 1.7.1 The MATLAB Desktop 1.7.2 Using the MATLAB Editor/Debugger 1.7.3 Getting Help 1.7.4 Saving and Retrieving Work Session Data 1.7.5 Digital Image Representation 1.7.6 Image I/O and Display 1.7.7 Classes and Image Types 1.7.8 M-Function Programming 1.8 How References Are Organized in the Book Summary 2 Intensity Transformations and Spatial Filtering Preview 2.1 Background 2.2 Intensity Transformation Functions 2.2.1 Functions imadjust and stretchlim 2.2.2 Logarithmic and Contrast- Stretching Transformations 2.2.3 Specifying Arbitrary Intensity Transformations 2.2.4 Some Utility M-functions for Intensity Transformations 2.3 Histogram Processing and Function Plotting 2.3.1 Generating and Plotting Image Histograms 2.3.2 Histogram Equalization 2.3.3 Histogram Matching (Specification) 2.3.4 Function adapthisteq 2.4 Spatial Filtering 2.4.1 Linear Spatial Filtering 2.4.2 Nonlinear Spatial Filtering 2.5 Image Processing Toolbox Standard Spatial Filters 2.5.1 Linear Spatial Filters 2.5.2 Nonlinear Spatial Filters 2.6 Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering 2.6.1 Background 2.6.2 Introduction to Fuzzy Sets 2.6.3 Using Fuzzy Sets 2.6.4 A Set of Custom Fuzzy M-functions 2.6.5 Using Fuzzy Sets for Intensity Transformations 2.6.6 Using Fuzzy Sets for Spatial Filtering Summary 3 Filtering in the Frequency Domain Preview 3.1 The 2-D Discrete Fourier Transform 3.2 Computing and Visualizing the 2-D DFT in MATLAB 3.3 Filtering in the Frequency Domain 3.3.1 Fundamentals 3.3.2 Basic Steps in DFT Filtering 3.3.3 An M-function for Filtering in the Frequency Domain 3.4 Obtaining Frequency Domain Filters from Spatial Filters 3.5 Generating Filters Directly in the Frequency Domain 3.5.1 Creating Meshgrid Arrays for Use in Implementing Filters in the Frequency Domain 3.5.2 Lowpass (Smoothing) Frequency Domain Filters 3.5.3 Wireframe and Surface Plotting 3.6 Highpass (Sharpening) Frequency Domain Filters 3.6.1 A Function for Highpass Filtering 3.6.2 High-Frequency Emphasis Filtering 3.7 Selective Filtering 3.7.1 Bandreject and Bandpass Filters 3.7.2 Notchreject and Notchpass Filters Summary 4 Image Restoration and Reconstruction Preview 4.1 A Model of the Image Degradation/Restoration Process 4.2 Noise Models 4.2.1 Adding Noise to Images with Function imnoise 4.2.2 Generating Spatial Random Noise with a Specified Distribution 4.2.3 Periodic Noise 4.2.4 Estimating Noise Parameters 4.3 Restoration in the Presence of Noise Only-Spatial Filtering 4.3.1 Spatial Noise Filters 4.3.2 Adaptive Spatial Filters 4.4 Periodic Noise Reduction Using Frequency Domain Filtering 4.5 Modeling the Degradation Function 4.6 Direct Inverse Filtering 4.7 Wiener Filtering 4.8 Constrained Least Squares (Regularized) Filtering 4.9 Iterative Nonlinear Restoration Using the Lucy-Richardson Algorithm 4.10 Blind Deconvolution 4.11 Image Reconstruction from Projections 4.11.1 Background 4.11.2 Parallel-Beam Projections and the Radon Transform 4.11.3 The Fourier Slice Theorem and Filtered Backprojections 4.11.4 Filter Implementation 4.11.5 Reconstruction Using Fan-Beam Filtered Backprojections 4.11.6 Function radon 4.11.7 Function iradon 4.11.8 Working with Fan-Beam Data Summary 5 Geometric Transformations and Image Registration Preview 5.1 Transforming Points 5.2 Affine Transformations 5.3 Projective Transformations 5.4 Applying Geometric Transformations to Images 5.5 Image Coordinate Systems in MATLAB 5.5.1 Output Image Location 5.5.2 Controlling the Output Grid 5.6 Image Interpolation 5.6.1 Interpolation in Two Dimensions 5.6.2 Comparing Interpolation Methods 5.7 Image Registration 5.7.1 Registration Process 5.7.2 Manual Feature Selection and Matching Using cpselect 5.7.3 Inferring Transformation Parameters Using cp2tform 5.7.4 Visualizing Aligned Images 5.7.5 Area-Based Registration 5.7.6 Automatic Feature-Based Registration Summary 6 Color Image Processing Preview 6.1 Color Image Representation in MATLAB 6.1.1 RGB Images 6.1.2 Indexed Images 6.1.3 Functions for Manipulating RGB and Indexed Images 6.2 Converting Between Color Spaces 6.2.1 NTSC Color Space 6.2.2 The YCbCr Color Space 6.2.3 The HSV Color Space 6.2.4 The CMY and CMYK Color Spaces 6.2.5 The HSI Color Space 6.2.6 Device-Independent Color Spaces 6.3 The Basics of Color Image Processing 6.4 Color Transformations 6.5 Spatial Filtering of Color Images 6.5.1 Color Image Smoothing 6.5.2 Color Image Sharpening 6.6 Working Directly in RGB Vector Space 6.6.1 Color Edge Detection Using the Gradient 6.6.2 Image Segmentation in RGB Vector Space Summary 7 Wavelets Preview 7.1 Background 7.2 The Fast Wavelet Transform 7.2.1 FWTs Using the Wavelet Toolbox 7.2.2 FWTs without the Wavelet Toolbox 7.3 Working with Wavelet Decomposition Structures 7.3.1 Editing Wavelet Decomposition Coefficients without the Wavelet Toolbox 7.3.2 Displaying Wavelet Decomposition Coefficients 7.4 The Inverse Fast Wavelet Transform 7.5 Wavelets in Image Processing Summary 8 Image Compression Preview 8.1 Background 8.2 Coding Redundancy 8.2.1 Huffman Codes 8.2.2 Huffman Encoding 8.2.3 Huffman Decoding 8.3 Spatial Redundancy 8.4 Irrelevant Information 8.5 JPEG Compression 8.5.1 JPEG 8.5.2 JPEG 8.6 Video Compression 8.6.1 MATLAB Image Sequences and Movies 8.6.2 Temporal Redundancy and Motion Compensation Summary 9 Morphological Image Processing Preview 9.1 Preliminaries 9.1.1 Some Basic Concepts from Set Theory 9.1.2 Binary Images, Sets, and Logical Operators 9.2 Dilation and Erosion 9.2.1 Dilation 9.2.2 Structuring Element Decomposition 9.2.3 The strel Function 9.2.4 Erosion 9.3 Combining Dilation and Erosion 9.3.1 Opening and Closing 9.3.2 The Hit-or-Miss Transformation 9.3.3 Using Lookup Tables 9.3.4 Function bwmorph 9.4 Labeling Connected Components 9.5 Morphological Reconstruction 9.5.1 Opening by Reconstruction 9.5.2 Filling Holes 9.5.3 Clearing Border Objects 9.6 Gray-Scale Morphology 9.6.1 Dilation and Erosion 9.6.2 Opening and Closing 9.6.3 Reconstruction Summary 10 Image Segmentation Preview 10.1 Point, Line, and Edge Detection 10.1.1 Point Detection 10.1.2 Line Detection 10.1.3 Edge Detection Using Function edge 10.2 Line Detection Using the Hough Transform 10.2.1 Background 10.2.2 Toolbox Hough Functions 10.3 Thresholding 10.3.1 Foundation 10.3.2 Basic Global Thresholding 10.3.3 Optimum Global Thresholding Using Otsu's Method 10.3.4 Using Image Smoothing to Improve Global Thresholding 10.3.5 Using Edges to Improve Global Thresholding 10.3.6 Variable Thresholding Based on Local Statistics 10.3.7 Image Thresholding Using Moving Averages 10.4 Region-Based Segmentation 10.4.1 Basic Formulation 10.4.2 Region Growing 10.4.3 Region Splitting and Merging 10.5 Segmentation Using the Watershed Transform 10.5.1 Watershed Segmentation Using the Distance Transform 10.5.2 Watershed Segmentation Using Gradients 10.5.3 Marker-Controlled Watershed Segmentation Summary 11 Representation and Description Preview 11.1 Background 11.1.1 Functions for Extracting Regions and Their Boundaries 11.1.2 Some Additional MATLAB and Toolbox Functions Used in This Chapter 11.1.3 Some Basic Utility M-Functions 11.2 Representation 11.2.1 Chain Codes 11.2.2 Polygonal Approximations Using Minimum-Perimeter Polygons 11.2.3 Signatures 11.2.4 Boundary Segments 11.2.5 Skeletons 11.3 Boundary Descriptors 11.3.1 Some Simple Descriptors 11.3.2 Shape Numbers 11.3.3 Fourier Descriptors 11.3.4 Statistical Moments 11.3.5 Corners 11.4 Regional Descriptors 11.4.1 Function regionprops 11.4.2 Texture 11.4.3 Moment Invariants 11.5 Using Principal Components for Description Summary Appendix A M-Function Summary Appendix B ICE and MATLAB Graphical User Interfaces Appendix C Additional Custom M-functions Bibliography Index ……