注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络人工智能模式识别原理及工程应用

模式识别原理及工程应用

模式识别原理及工程应用

定 价:¥39.00

作 者: 周丽芳 ,李伟生 ,黄颖 著
出版社: 机械工业出版社
丛编项:
标 签: 工学 计算机 教材 研究生/本科/专科教材

购买这本书可以去


ISBN: 9787111418634 出版时间: 2013-06-01 包装: 平装
开本: 16开 页数: 201 字数:  

内容简介

  《模式识别原理及工程应用》以模式识别技术为主题,系统地讨论了模式识别的基本概念和代表性方法,并通过一定的应用实例,帮助读者深入地理解理论方法,系统地掌握模式识别的理论精髓和相关技术。《模式识别原理及工程应用》所有应用实例均为作者所在研究团队和协作团队开发产品和科研工作的总结,具有一定前沿性和实用性。在实例中,也综合了人工智能、模式识别、自动控制、图像处理、生理学、心理学、认知科学等多种学科方法,具有深远的社会意义。《模式识别原理及工程应用》可作为高等院校计算机、电子、通信、自动化等专业研究生和高年级本科生的教材,也可作为计算机信息处理、自动控制等相关领域的工程技术人员的参考用书。

作者简介

暂缺《模式识别原理及工程应用》作者简介

图书目录

前言
第1章 模式识别概述
1.1 模式识别的基本概念
1.2 模式识别的主要方法
1.2.1 决策理论方法
1.2.2 句法方法
1.2.3 模糊模式识别方法
1.2.4 人工神经网络方法
1.2.5 人工智能方法
1.3 模式识别系统
1.4 模式识别系统的应用举例
1.4.1 指纹识别
1.4.2 车牌识别
1.4.3 人脸识别
1.4.4 语音识别
1.5 本书的主要内容
本章小结
习题
第2章 基于贝叶斯决策理论的分类器
2.1 分类器的描述方法
2.2 贝叶斯决策理论
2.2.1 贝叶斯决策理论的概念
2.2.2 基于最小错误率的贝叶斯决策与实现
2.2.3 基于最小风险的贝叶斯决策与实现
2.3 判别函数和决策面
2.4 正态分布的贝叶斯分类
2.5 最小最大损失准则
本章小结
习题
第3章 概率密度函数的估计
3.1 引言
3.2 参数估计的基本概念
3.2.1 最大似然估计
3.2.2 贝叶斯估计和贝叶斯学习
3.3 正态分布的有监督参数估计
3.3.1 最大似然估计示例
3.3.2 贝叶斯估计和贝叶斯学习示例
3.4 无监督参数估计
3.4.1 无监督最大似然估计中的几个问题
3.4.2 正态分布情况下的无监督参数估计
3.5 总体分布的非参数估计
3.5.1 基本方法
3.5.2 Parzen窗法
本章小结
习题
第4章 判别函数分类器的设计
4.1 判别函数的基本概念
4.2 线性判别函数
4.2.1 广义线性判别函数
4.2.2 Fisher线性判别
4.2.3 感知准则函数
4.2.4 最小平方误差准则函数
4.3 线性分类器
4.4 分段线性分类器
4.5 基于核的Fisher分类
4.6 非线性判别函数
4.6.1 分段线性判别函数的基本概念
4.6.2 用凹函数的并表示分段线性判别函数
4.7 非线性分类器
4.8 支持向量机
本章小结
习题
第5章 近邻法
5.1 最近邻法
5.1.1 最近邻决策规则
5.1.2 最近邻法的错误率分析
5.2 k-近邻法
5.3 剪辑近邻法
5.4 压缩近邻法
本章小结
习题
第6章 特征选择
6.1 引言
6.2 特征的评价准则
6.3 类别可分性判据
6.3.1 基于类距离的可分性判据
6.4 特征子集的选择
6.5 最优特征的生成
6.6 特征选择的最优算法
6.7 特征选择的次优算法
6.8 特征选择的遗传算法
本章小结
习题
第7章 特征提取
7.1 引言
7.2 基于类别可分性判据的特征提取
7.3 主成分分析法
7.4 K-L变换
7.5 非线性维数降低
7.6 Haar变换
本章小结
习题
第8章 聚类
8.1 基本概念
8.2 动态聚类算法
8.2.1 概念
8.2.2 C均值算法
8.2.3 C均值算法的聚类数目
8.3 模糊聚类算法
8.3.1 概念
8.3.2 模糊C均值算法
8.3.3 基于交替优化的实现
8.3.4 基于神经网络的实现
8.3.5 基于进化计算的实现
8.4 合并算法
8.4.1 基于矩阵理论的合并算法
8.4.2 基于图论的合并算法
8.5 层次聚类算法
8.6 最佳聚类数的选择
8.7 顺序聚类算法
8.7.1 聚类数的估计
8.7.2 顺序聚类算法的改进
本章小结
习题
第9章 模糊模式识别方法
9.1 引言
9.2 模糊集的基本知识
9.2.1 模糊集的定义与运算
9.3 模糊特征和模糊分类
9.3.1 模糊化特征
9.3.2 结果的模糊化
9.4 特征的模糊评价
9.4.1 模糊度
9.4.2 模糊特征提取
9.5 模糊模式识别的基本类型
9.5.1 第一类模糊模式识别
9.5.2 第二类模糊模式识别
9.6 基于模糊相似矩阵的分类方法
9.6.1 传递闭包法
9.6.2 直接聚类法
本章小结
习题
第10章 车牌识别的应用举例
10.1 概述
10.2 字符识别算法
10.2.1 字符识别原理
10.2.2 基于模板匹配的字符识别算法
10.2.3 基于神经网络的字符识别算法
10.2.4 特征统计匹配法
10.3 实验方案
10.3.1 车牌定位
10.3.2 车牌字符分割
10.3.3 车牌字符识别
本章小结
习题
第11章 签名识别的应用举例
11.1 概述
11.2 基于视频的签名识别系统流程
11.3 实验方案
11.3.1 签名识别的数据获取与初始笔尖定位
11.3.2 视频签名识别的笔尖追踪
11.3.3 基于视频的签名识别的特征提取及分类
本章小结
习题
第12章 人脸识别的应用举例
12.1 概述
12.2 特征获取算法
12.2.1 特征获取综述
12.2.2 基于几何的特征获取算法
12.2.3 基于统计的特征获取算法
12.3 实验方案
12.3.1 人脸定位检测
12.3.2 人脸特征提取
12.3.3 人脸分类识别
本章小结
习题
附录 教学建议
参考文献

本目录推荐