1 Introduction
Part Ⅰ Fusion as Energy Source
2 Energy Problem and Related Safety Aspects
3 Fusion Fuel
3.1 Fusion Reactions
3.2 Ignition and Burn Criteria
4 Fusion Concepts
4.1 Inertial Plasma Confinement
4.2 Magnetic Plasma Confinement
4.3 Stellarator Concept
4.4 Tokamak Concept
4.5 Design of the First Wall
4.5.1 Limiter
4.5.2 Divertor
Part Ⅱ The Plasma-Material Interface
5 The Plasma State
5.1 Ionization Degree and Coupling Constant
5.2 Debye Length
5.3 Plasma Frequency
5.4 Collisions in Plasmas
5.5 Transport Processes in Plasmas
5.5.1 Transport by Binary Collisions
5.5.2 Neoclassical Diffusion
5.5.3 Anomalous Transport
5.6 The Vlasov Equation
5.7 The Poisson Equation
6 Particle Coupling
6.1 Binary Collisions
6.1.1 Scattering Angle a
6.1.2 Scattering in the Coulomb Field, U (r) = C/r
6.1.3 Cross-Section
6.1.4 Interaction Potential U (r)
6.1.5 Binary Collision: General Case
6.2 Particle Transport in Matter
6.2.1 Definitions and Main Parameters
6.2.2 Elastic Energy Loss
6.2.3 Inelastic Energy Loss
6.3 Material Modification by Ion Beams
6.4 Retention and Tritium Inventory Control
6.5 Impurity Generation
6.5.1 Physical Sputtering
6.5.2 Chemical Erosion
6.5.3 Radiation-Enhanced Sublimation
6.5.4 Thermal Evaporation
6.5.5 Blistering
6.6 Charge Effects
6.7 Diffusion-Controlled Sputtering
6.8 Backscattering
6.8.1 One-Collision Model
6.8.2 The Diffusion Model
6.8.3 Approximations
6.9 Electron Emission
6.9.1 Secondary Electron Emission (SEE)
6.9.2 Thermionic Electron Emission
6.9.3 Electron Emission by the Application of an Electric Field
6.10 Modeling of Particle-Solid Interaction
6.10.1 Molecular Dynamics
6.10.2 Monte Carlo Methods
7 Electrical Coupling
7.1 Electron Flux Density
7.2 Ion Flux Density
7.3 Bohm Criterion with the “=” Sign
7.4 Space Charge Limited Currents
7.5 Effect of Magnetic Field Geometry
……
Part Ⅲ Operation Limits and Criteria