1.Introduction
2.Eigenmodes of Photonic Crystals
2.1Wave Equations and Eigenvalue Problems
2.2Eigenvalue Problems in Two-Dimensional Crystals
2.3Scaling Law and Time R:eversal Symmetry
2.4 Photonic Band Calculation
2.4.1 Fourier Expansion of Dielectric Functions
2.4.2 Some Examples
2.5 Phase Velocity, Group Velocity, and Energy Velocity
2.6 Calculation of Group Velocity
2.7 Complete Set of Eigenfunctions
2.8 Retarded Green's Function
3. Symmetry of Eigenmodes
3.1 Group Theory for Two-Dimensional Crystals
3.2 Classification of Eigenmodes in the Square Lattice
3.3 Classification of Eigenmodes in the Hexagonal Lattice
3.4 Group Theory for Three-Dimensional Crystals
3.5 Classification of Eigenmodes in the Simple Cubic Lattice
3.6 Classification of Eigenmodes in the fcc Lattice
4.Transmission Spectra
4.1 Light Transmission and Bragg Reflection
4.2 Field Equations
4.2.1 E Polarization
4.2.2 H Polarization
4.3 Fourier Transform of the Dielectric Function
4.3.1 Square Lattice
4.3.2 Hexagonal Lattice
4.4 Some Examples
4.4.1 Square Lattice
4.4.2 Hexagonal Lattice
4.5 Refraction Law for Photonic Crystals
……
5.Optical R,esponse of Photonic Crystals
6.Defect Modes in Photonic Crystals
7.Band Calculationwith Frequency-Dependent Dielectric Constants
8.Photonic Crystal Slabs
9.Low-Threshold Lasing Due to Group-Velocity Anomaly
10.Quantum Optics in Photonic Crystals
11.Superfiuorescence
12.Epilogue
References
Index