在大数据领域,Hadoop无疑是最炙手可热的技术。作为分布式系统架构,Hadoop具有高可靠性、高扩展性、高效性、高容错性和低成本的优点。然而随着数据体积越来越大,实时处理能力成为了许多机构需要面对的首要挑战。Hadoop是一个批处理系统,在实时计算处理方面显得十分乏力。storm是一个类似于Hadoop勺实时数据处理框架,也是一个非常有效的开源实时计算工具,通常被比作“实时的Hadoop”。《大数据技术丛书:Storm实时数据处理》通过丰富的实例,系统讲解Storm的基础知识和实时数据处理的最佳实践方法,内容涵盖Storm本地开发环境搭建、日志流数据处理、Trident、分布式远程过程调用、Topology在不同编程语言中的实现方法、Storm与Hadoop的集成方法、实时机器学习、持续交付和如何在AWS上部署Storm。此外,《大数据技术丛书:Storm实时数据处理》旨在围绕Storm技术促进DevOps实践,使读者能够开发Storm解决方案,同时可靠地交付有价值的产品。《大数据技术丛书:Storm实时数据处理》适合想学习实时处理技术或者想通过Storm实现实时处理方法的开发者阅读。