2 History of Conventional Spin Wave Theory . . . . . . . . . . . . . . . . 9
2.1 Theoretical and Experimental Confusions . . . . . . . . . . . . . . . . . . . 9
2.2 Problems with the Macroscopic Magnetization . . . . . . . . . . . . . . 17
3 Basic Issues of Renormalization Group (RG) Theory . . . . . . 25
3.1 Dynamics of Non Magnetic Solids . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Dynamics of Ordered Magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Non-Magnetic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Ordered Magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5 Microscopic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6 Non-Relevant Magnons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7 Crossover Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1 Amplitude Crossover (AC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Quantum State Crossover (QS). . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3 Crossover Between Stable Fixed Points (SFP) . . . . . . . . . . . . . . . 113
7.4 Symmetry Crossover (SC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.5 Dimensionality Crossover (DC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8 Metastability of Universality Classes . . . . . . . . . . . . . . . . . . . . . . . 129
9 Relevant and Non-Relevant Interactions . . . . . . . . . . . . . . . . . . . 139
10 Temperature Dependence of the Magnon Excitation
Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11 Magnetic Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11.1 NonRelevant Magnetic Heat Capacity for T →0 . . . . . . . . . . . . . 167
12 Experimental Verification of GSW Bosons . . . . . . . . . . . . . . . . . 185
13 Magnets With and Without Magnon Gap (Goldstone
Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
13.1 Isotropic Magnets with Half-Integer Spin
(T 2 Universality Class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
13.2 Isotropic Magnets with Integer Spin
(T 9/2 Universality Class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
13.3 Two-Dimensional Magnets with Half-Integer Spin (T 3/2
Universality Class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
13.4 Two-Dimensional Magnets with Integer Spin
(T 2 Universality Class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
13.5 One-Dimensional Magnets with Half-Integer
Spin (T 5/2 Universality Class). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
13.6 One-Dimensional Magnets with Integer Spin
(T 3 Universality Class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
13.7 Field Dependence of the Classical Magnon Spectrum. . . . . . . . . 221
14 Microscopic Details: Spin Structure, Site Disorder, Two
Order Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
15 The Critical Magnetic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 241
15.1 Isotropic 3D Magnets with Half-Integer Spin (T 2 Universality
Class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
15.2 Anisotropic 3D Magnets with Half-Integer Spin (T 3/2
Universality Class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
15.3 Isotropic 3D Magnets with Integer Spin (T 9/2 Universality
Class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
15.4 Anisotropic 3D Magnets with Integer Spin (T 2 Universality
Class) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
15.5 Amorphous Ferromagnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
15.6 Two-Dimensional Magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
15.7 One-Dimensional Magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
16 Thermal Lattice Expansion and Magnetostriction . . . . . . . . . . 309
16.1 Spontaneous Magnetostriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
16.2 Thermal Lattice Expansion of Non-Magnetic Solids . . . . . . . . . . 328
17 The Total Energy Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
11.2 Relevant Magnetic Heat Capacity for T →0. . . . . . . . . . . . . . . . . 171
18 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
18.1 Superconducting Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
18.2 Superconducting Excitation Gap . . . . . . . . . . . . . . . . . . . . . . . . . . 358
18.3 Problems with Landau's Order Parameter Concept . . . . . . . . . . 364
19 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389