注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学物理学物理学中的拓扑与几何(英文影印版)

物理学中的拓扑与几何(英文影印版)

物理学中的拓扑与几何(英文影印版)

定 价:¥69.00

作 者: (德)埃施里格(H. Eschrig)著
出版社: 北京大学出版社
丛编项: 中外物理学精品书系
标 签: 理论物理学 物理学 自然科学

购买这本书可以去


ISBN: 9787301248300 出版时间: 2014-11-04 包装: 平装
开本: 16开 页数: 408 字数:  

内容简介

  《物理学中的拓扑与几何(英文影印版)》讲述了在物理学中应用的拓扑和几何知识,包括流形、张量场、流形上的微积分、纤维丛理论等。特别地,本书讲解了这些理论在物理学中的诸多应用。随着理论物理的发展,拓扑与几何这些数学理论在物理中的应用日益广泛。特别地,在理论物理近些年的一些新理论中,拓扑和几何的应用更加重要。本书系统而深入,其引进能够给理论物理工作者以很大帮助。

作者简介

  (德)埃施里格(H.Eschrig),德国教授。

图书目录

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Base of Topology, Metric, Norm. . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Connectedness, Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Topological Charges in Physics. . . . . . . . . . . . . . . . . . . . . . . . 48
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1 Charts and Atlases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Smooth Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Tangent Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 Mappings of Manifolds, Submanifolds . . . . . . . . . . . . . . . . . . . 71
3.6 Frobenius' Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7 Examples from Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7.1 Classical Point Mechanics . . . . . . . . . . . . . . . . . . . . . . 82
3.7.2 Classical and Quantum Mechanics . . . . . . . . . . . . . . . . 84
3.7.3 Classical Point Mechanics Under
Momentum Constraints . . . . . . . . . . . . . . . . . . . . . . . . 86
3.7.4 Classical Mechanics Under Velocity Constraints. . . . . . . 93
3.7.5 Thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4 Tensor Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1 Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Exterior Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3 Tensor Fields and Exterior Forms . . . . . . . . . . . . . . . . . . . . . . 106
4.4 Exterior Differential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 110
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5 Integration, Homology and Cohomology . . . . . . . . . . . . . . . . . . . . 115
5.1 Prelude in Euclidean Space. . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Chains of Simplices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3 Integration of Differential Forms . . . . . . . . . . . . . . . . . . . . . . . 127
5.4 De Rham Cohomology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5 Homology and Homotopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.6 Homology and Cohomology of Complexes. . . . . . . . . . . . . . . . 138
5.7 Euler's Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.8 Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.9 Examples from Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.1 Lie Groups and Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.2 Lie Group Homomorphisms and Representations . . . . . . . . . . . 177
6.3 Lie Subgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.4 Simply Connected Covering Group . . . . . . . . . . . . . . . . . . . . . 181
6.5 The Exponential Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.6 The General Linear Group Gl(n,K) . . . . . . . . . . . . . . . . . . . . . 190
6.7 Example from Physics: The Lorentz Group . . . . . . . . . . . . . . . 197
6.8 The Adjoint Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 202
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7 Bundles and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.1 Principal Fiber Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.2 Frame Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.3 Connections on Principle Fiber Bundles . . . . . . . . . . . . . . . . . . 213
7.4 Parallel Transport and Holonomy . . . . . . . . . . . . . . . . . . . . . . 220
7.5 Exterior Covariant Derivative and Curvature Form . . . . . . . . . . 222
7.6 Fiber Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.7 Linear and Affine Connections . . . . . . . . . . . . . . . . . . . . . . . . 231
7.8 Curvature and Torsion Tensors . . . . . . . . . . . . . . . . . . . . . . . . 238
7.9 Expressions in Local Coordinates on M . . . . . . . . . . . . . . . . . . 240
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
8 Parallelism, Holonomy, Homotopy and (Co)homology . . . . . . . . . . 247
8.1 The Exact Homotopy Sequence. . . . . . . . . . . . . . . . . . . . . . . . 247
8.2 Homotopy of Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.3 Gauge Fields and Connections on R4. . . . . . . . . . . . . . . . . . . . 256
8.4 Gauge Fields and Connections on Manifolds . . . . . . . . . . . . . . 262
8.5 Characteristic Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
8.6 Geometric Phases in Quantum Physics. . . . . . . . . . . . . . . . . . . 276
8.6.1 Berry-Simon Connection . . . . . . . . . . . . . . . . . . . . . . . 276
8.6.2 Degenerate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
8.6.3 Electrical Polarization . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.6.4 Orbital Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.6.5 Topological Insulators . . . . . . . . . . . . . . . . . . . . . . . . . 294
8.7 Gauge Field Theory of Molecular Physics . . . . . . . . . . . . . . . . 296
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
9 Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
9.1 Riemannian Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.2 Homogeneous Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
9.3 Riemannian Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
9.4 Geodesic Normal Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 312
9.5 Sectional Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
9.6 Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
9.7 Complex, Hermitian and K?hlerian Manifolds. . . . . . . . . . . . . . 336
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Compendium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

本目录推荐