Preface ix
CHAPTER 1 Introduction
CHAPTER 2 Fluid fow and mass transfer on particle scale
2.1 Introduction
2.2 Theoretical basis
2.2.1 Fluid mechanics
2.2.2 Mass transfer
2.2.3 Interfacial force balance
2.2.4 Interfacial mass transport
2.3 Numerical methods
2.3.1 Orthogonal boundary-ftted coordinate system
2.3.2 Level set method
2.3.3 Mirror fuid method
2.4 Buoyancy-driven motion and mass transfer of a single particle
2.4.1 Drop, bubble and solid particle motion
2.4.2 Mass transfer to/from a drop
2.5 Mass transfer-induced Marangoni effect
2.5.1 Solute-induced Marangoni effect
2.5.2 Effect of surfactant on drop motion and mass transfer
2.5.3 Surfactant-induced Marangoni effect
2.6 Behavior of particle swarms
2.6.1 Introduction
2.6.2 Forces on single particles
2.6.3 Cell model
2.7 Single particles in shear fow and extensional fow
2.7.1 Mass/heat transfer from a spherical particle in extensional fow
2.7.2 Flow and transport from a sphere in simple shear fow
2.8 Summary and perspective
2.8.1 Summary
2.8.2 Perspective
Nomenclature
References
CHAPTER 3 Multiphase stirred reactors
3.1 Introduction
3.2 Mathematical models and numerical methods
3.2.1 Governing equations
3.2.2 Interphase momentum exchange
3.2.3 RANS method
3.2.4 LES model
3.2.5 Impeller treatment
3.2.6 Numerical details
3.3 Two-phase fow in stirred tanks
3.3.1 Solid?Cliquid systems
3.3.2 Gas?Cliquid systems
3.3.3 Liquid?Cliquid systems
3.4 Three-phase fow in stirred tanks
3.4.1 Liquid?Cliquid?Csolid systems
3.4.2 Gas?Cliquid?Cliquid systems
3.4.3 Liquid?Cliquid?Cliquid systems
3.4.4 Gas?Cliquid?Csolid systems
3.5 Summary and perspective
3.5.1 Summary
3.5.2 Perspective
Nomenclature
References
CHAPTER 4 Airlift loop reactors
4.1 Introduction
4.2 Flow regime identifcation
4.3 Mathematical models and numerical methods
4.3.1 Eulerian?CEulerian two-fuid model
4.3.2 Closure of interfacial forces
4.3.3 Closure of turbulence models
4.3.4 Numerical methods
4.4 Hydrodynamics and transport in airlift loop reactors
4.4.1 Hydrodynamic behavior
4.4.2 Interphase transport phenomena
4.5 Macromixing and micromixing
4.5.1 Macromixing in airlift loop reactors
4.5.2 Micromixing in airlift loop reactors
4.6 Guidelines for design and scale-up of airlift loop reactors
4.7 Summary and perspective
Nomenclature
References
CHAPTER 5 Preliminary investigation of two-phase microreactors
5.1 Introduction
5.2 Mathematical models and numerical methods
5.3 Simulation using lattice Boltzmann method
5.3.1 Numerical simulation of two-phase fow in microchannels
5.3.2 Numerical study of heat transfer in microchannels
5.3.3 Numerical simulation of mass transfer in microchannels
5.4 Experimental
5.4.1 Flow pattern
5.4.2 Pressure drop
5.4.3 Mass transfer performance
5.4.4 Micromixing
5.5 Summary and perspective
Nomenclature
References
CHAPTER 6 Crystallizers: CFD?CPBE modeling
6.1 Introduction
6.2 Mathematical models and numerical methods
6.2.1 General population balance equation
6.2.2 Standard method of moments
6.2.3 Quadrature method of moments
6.2.4 Multi-class method or discretized method
6.3 Crystallizer modeling procedures
6.3.1 Species transport equations
6.3.2 Nucleation and growth kinetics
6.3.3 Aggregation and breakage kernels
6.3.4 Computational details
6.3.5 Simulated results of precipitation processes
6.4 Macromixing and micromixing
6.5 Summary and perspective
Nomenclature
References
Index