注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学生物科学气相爆破技术与生物炼制

气相爆破技术与生物炼制

气相爆破技术与生物炼制

定 价:¥148.00

作 者: 陈洪章 著
出版社: 化学工业出版社
丛编项:
标 签: 爆炸物工业/火柴工业 工业技术 化学工业

购买这本书可以去


ISBN: 9787122257574 出版时间: 2016-01-01 包装: 平装
开本: 16开 页数: 364 字数:  

内容简介

  气相爆破技术用于预处理生物质原料,近年来得到了国内外研究者的广泛重视。笔者基于秸秆与木材在化学组成和结构上的差异,提出对秸秆不加任何化学药品的无污染低压蒸汽爆破新技术,并推广到烟草加工、中草药提取、麻纤维清洁脱胶等行业领域。本书系统分析了气相爆破技术原理及固体多组分物料蒸汽爆破组分分离机制,并对气相爆破的工艺设备进行了介绍,重点对其生物质炼制应用工艺进行了阐述。

作者简介

  陈洪章,中国科学院过程工程研究所,研究员,现任生化工程国家重点实验室副主任、生物质项目首席研究员。主要致力于生态生化工程研究,以新型固态发酵和原料组分分离为核心,充分吸收分子生物学和工业生态学的新思路,研究生态生化工程的学科基础和关键技术平台问题。

图书目录

1 Gas Explosion Technique Principles and Biomass
Refining Pandect 1
1.1 Gas Explosion Technical Overview 1
1.1.1 History of Gas Explosion Technique1
1.1.2 Technical Classification of Gas Explosion 3
1.1.3 Latest Developments of Gas Explosion Technique 5
1.2 Biomass Refinery and Gas Explosion Technology 12
1.2.1 Biomass Concept and Biomass Refining 12
1.2.2 Lignocellulosic Biomass Recalcitrance to Degradation 13
1.2.3 Effective Methods to Expose Cellulose in Cell Wall by Physicochemical Pretreatments 14
1.2.4 Advantages of Steam Explosion-Derived Biomass Refining15
1.3 Foreground and Prospect17
1.3.1 Preface 17
1.3.2 Cognition of Biomass Supermolecule Structure and Necessity of Selective Structural Deconstruction17
1.3.3 Analysis of Biomass Recalcitrance and Breaking Pathways19
1.3.4 Changes of Biomass Mechanical Properties During Refining Process 19
1.3.5 Thermodynamics and Dynamics During Biomass Refining Processes 20
1.3.6 Basis of Biomass Engineering Science 21
References 23
2 Principle of Gas Explosion Technology 27
2.1 The Main Parameters Affecting the Gas Explosion Process 28
2.1.1 Overview 28
2.1.2 Effect of Material Parameters on Gas Explosion29
2.1.3 Effect of Operating Parameters on Gas Explosion38
2.1.4 Effect of Equipment Parameters on the Gas Explosion 40
2.1.5 Relationship Between Product Parameters and Gas Explosion 41
2.2 Multi-scale Modeling of Biomass Pretreatment for Steam Explosion Condition Optimization 42
2.2.1 Overview 42
2.2.2 Multi-scale Model Eduction in the Instantaneous Decompression Stage of Steam Explosion 44
2.2.3 Multi-scale Model Connotation 49
2.2.4 Establishing a Novel Severity Factor on the Basis of Chip Size, Discharge Port Area,and Moisture Content 53
2.3 Mechanisms of the Physical and Chemical Coupling Effects of Gas Explosion 54
2.3.1 Overview 54
2.3.2 Effects of SE on Degradation of Hemicellulose and Lignin 55
2.3.3 Effects of SE on Pore Distribution of Straw 57
2.3.4 Effects of SE on Permeability of Straw 59
2.3.5 Effects of SE on EHY of Straw 59
2.4 Dissolution Thermodynamics of the Degradation Products of Steam-Exploded Straw 61
2.4.1 Overview 61
2.4.2 Effects of Temperature on the Dissolution Rate of Degradation Products 62
2.4.3 Effects of LSR on the Dissolution Rate of Degradation Products 63
2.4.4 Effects of Ionic Strength on the Dissolution Rate of Degradation Products 63
2.4.5 Effects of pH on the Dissolution Rate of Degradation Products 64
2.4.6 Optimal Dissolution Conditions for Sugars and Phenolic Compounds 64
2.4.7 Dissolution Thermodynamic Principles for Degradation Products in SE 65
2.5 Formation Kinetics of Potential Fermentation Inhibitors in a Steam Explosion Process of Corn Straw 67
2.5.1 Overview 67
2.5.2 Determination of Potential Fermentation Inhibitors in Steam Explosion Hydrolysates 67
2.5.3 Yields of Inhibitors at Different Steam Explosion Conditions 70
2.5.4 Dynamic Parameters and Yield Equations of Inhibitors in Steam Explosion Process72
2.6 Analysis of Energy Consumption on Steam Explosion Process 74
2.6.1 Overview 74
2.6.2 The Composition of Steam Explosion Energy Consumption 75
2.6.3 Calculation Formulas for Each Part of Energy 75
2.6.4 Experiment Design and Data Processing 77
2.6.5 Relationship Between the Ratio of Tank Height to Diameter, Loading Coefficient, Initial Moisture Content of Materials, Holding Temperature,and Total Energy Consumption 77
2.6.6 Energy Analysis of Steam Explosion Process79
References 85
3 Gas Explosion Equipments 87
3.1 Cutter Bar and Dedusting Equipments 87
3.1.1 Knife-Rall Straw Cutter 87
3.1.2 Straw Baler 97
3.1.3 Straw Baler Loosing Machine 105
3.1.4 Conveyor 107
3.2 Rehydration and Dehydration Equipments 108
3.2.1 Rehydration Equipment108
3.2.2 Dehydration Equipment 110
3.3 Gas Explosion Equipments 113
3.3.1 Batch Gas Explosion Equipment 113
3.3.2 Continuous Gas Explosion Equipments 115
3.3.3 In Situ Gas Explosion Equipment119
3.4 Steam Generator 121
3.4.1 Overview of Steam Generator 121
3.4.2 Electric Steam Generator124
3.4.3 Fuel Steam Generator 129
3.4.4 Coal-Fired Steam Generator131
3.5 Receiver 131
3.6 Parameters Detection 131
3.6.1 System for Dynamic Data Test 132
3.6.2 Pressure Transducers 133
3.6.3 Temperature Transducers133
3.6.4 Solid Flowmeter134
3.7 Carding Device 137
3.7.1 Hydraulic Carding Device (Paul Fractionator) 137
3.7.2 Airflow Grading Device 138
3.7.3 Mechanical Carding Device141
References 142
4 Process Development of Gas Explosion 145
4.1 Process Development of Gas Explosion Technology145
4.1.1 Overview of Gas Explosion Technology 145
4.1.2 Iogen Steam Explosion Technology 146
4.1.3 Stake Steam Explosion Technology 148
4.1.4 Low-Pressure and Non-pollution Steam Explosion
6.4.6 Protein Fiber Processing 311
6.5 Application of Steam Explosion Technology in Chemical Industry 317
6.5.1 Oxalic Acid318
6.5.2 Furfural320
6.5.3 Acetylpropionic Acid 323
6.5.4 Xylooligosaccharide/Xylose/Xylitol 326
6.5.5 Citric Acid 328
6.5.6 Xanthan Gum 330
6.5.7 Phenolic Acids332
6.5.8 Silicon Dioxide 336
6.5.9 Chemical Production Examples Based on Steam Explosion Technology 338
6.6 Application of Steam Explosion Technology in Environmental Protection339
6.6.1 Damage and Management of Solid Wastes 340
6.6.2 Organic Fertilizer Manufacturing 344
6.6.3 Application of Steam Explosion in Papermaking Industry 346
6.6.4 Environmental Materials Manufactured with Steam-Exploded Straw353
References 358

本目录推荐