大数据时代,MapReduce的重要性不言而喻。Hadoop作为MapReduce框架的一个实现,受到业界广泛的认同,并被广泛部署和应用。尽管Hadoop为数据开发工程师入门和编程提供了极大便利,但构造一个真正满足性能要求的MapReduce程序并不简单。数据量巨大是大数据工作的现实问题,而对低响应时间的要求则时常困扰着数据开发工程师。《Hadoop MapReduce性能优化》采用原理与实践相结合的方式,通过原理讲解影响MapReduce性能的因素,透过实例一步步地教读者如何发现性能瓶颈并消除瓶颈,如何识别系统薄弱环节并改善薄弱环节,讲解过程中融合了作者在优化实践过程中积累的丰富经验,具有很强的针对性。读完本书,能让读者对Hadoop具有更强的驾驭能力,从而构造出性能最优的MapReduce程序。Hadoop性能问题既是程序层面的问题,也是系统层面的问题。本书既覆盖了系统层面的优化又覆盖了程序层面的优化,非常适合Hadoop管理员和有经验的数据开发工程师阅读。对于初学者,本书第1章也作了必要的技术铺垫,避免对后面章节的理解产生梯度。