《粗糙集理论及其数据挖掘应用》共分为8章。第1章首先介绍了粗糙集理论在钢铁行业和图像处理领域的研究综述;第2章概述了粗糙集和粒子群基本理论;第3章介绍了粗糙集理论和熵理论的关系,利用条件熵与粗糙集进行了层次树的构造;第4章阐述了变精度粗糙集理论和信息熵的概念和基于离散粒子群的变精度粗糙集约简算法;第5章介绍了优势粗糙集的理论和TOPSIS决策理论;第6章介绍了粗糙集理论在链篦机质量判断中的应用;第7章阐述了粗糙集理论在图像数据挖掘中的应用;第8章介绍了粗糙集理论在预混火焰数据挖掘中的应用。 《粗糙集理论及其数据挖掘应用》涵盖了作者近几年的研究成果。将粗糙集理论与钢铁工业工程应用和数字图像处理等进行了较好的结合,并在钢铁行业中球团质量数据挖掘、图像处理数据挖掘、预混火焰数据挖掘等前沿热点研究领域中提供了实例,是将粗糙集与数据挖掘有机结合的一《粗糙集理论及其数据挖掘应用》。