《实用性目标检测与跟踪算法原理及应用》从实时与实用两个角度,结合具体实例系统讲述了视觉目标检测与跟踪算法原理及应用。在视觉目标检测部分,《实用性目标检测与跟踪算法原理及应用》全面论述了AdaBoost算法原理、积分图及Haar-Like特征快速计算方法和Viola-Jones通用目标检测框架、梯度直方图、SVM原理、HOG与SVM相结合的目标检测框架,同时给出了这两类算法在人脸检测与行人检测中的应用实例及基于openCV的实现。在视觉目标跟踪部分,《实用性目标检测与跟踪算法原理及应用》系统介绍了单目标跟踪算法的分类与现存问题及性能评价方法;详细论述了以压缩感知理论为背景的压缩跟踪算法原理及改进算法.并对其具体实现给出了细节分析;全面讲述了跟踪、学习及检测相结合的视觉目标跟踪算法的原理,并给出了其性能分析。最后,从具体问题出发,《实用性目标检测与跟踪算法原理及应用》详细说明了目标检测与跟踪算法在人眼区域检测与跟踪、多人脸检测与跟踪、交互式鱼体跟踪系统中的应用。《实用性目标检测与跟踪算法原理及应用》内容丰富、案例典型,论述由浅入深、重点突出,理论与实例紧密结合,内容安排合理、可读性强。《实用性目标检测与跟踪算法原理及应用》适用于计算机视觉相关方向的研究生和高年级本科生阅读,同时也可作为相关领域研究人员和目标检测与跟踪算法工程师的参考资料。