1章 简介 1
1.1 Python和HDF5 2
1.1.1 数据和元数据的组织 2
1.1.2 大数据复制 3
1.2 HDF5到底是什么 4
1.2.1 HDF5文件规格 5
1.2.2 HDF5标准库 6
1.2.3 HDF5生态系统 6
第2章 开始使用 7
2.1 HDF基本原理 7
2.2 设置 8
2.2.1 Python2还是Python3 8
2.2.2 代码示例 9
2.2.3 NumPy 9
2.2.4 HDF5和h5py 11
2.2.5 IPython 11
2.2.6 时间和优化 12
2.3 HDF5工具 13
2.3.1 HDFView 13
2.3.2 ViTables 14
2.3.3 命令行工具 15
2.4 你的第一个HDF5文件 16
2.4.1 使用环境管理器 17
2.4.2 文件驱动 18
2.4.3 用户块 19
第3章 使用数据集 20
3.1 数据集基础 20
3.1.1 类型和形状 20
3.1.2 读和写 21
3.1.3 创建空数据集 22
3.1.4 显式指定存储类型来节省空间 22
3.1.5 自动类型转换和直读 23
3.1.6 用astype读 24
3.1.7 改变形状 25
3.1.8 默认填充值 25
3.2 读写数据 25
3.2.1 高效率切片 26
3.2.2 start-stop-step索引 27
3.2.3 多维切片和标量切片 28
3.2.4 布尔索引 29
3.2.5 坐标列表 30
3.2.6 自动广播 31
3.2.7 直读入一个已存在的数组 32
3.2.8 数据类型注解 33
3.3 改变数据集的形状 34
3.3.1 创建可变形数据集 35
3.3.2 用resize重新组织数据 36
3.3.3 何时以及如何进行resize 37
第4章 让分块和压缩来帮忙 38
4.1 连续存储 38
4.2 分块存储 40
4.3 设置分块形状 41
4.3.1 自动分块 41
4.3.2 手动选择一个形状 42
4.4 性能实例:可变形数据集 43
4.5