Contents
1 Vapor–Liquid–Solid Growth of Semiconductor Nanowires 1 Heon-Jin Choi
1.1 Introduction 1
1.2 VLS Mechanism for One-DimensionalCrystal Growth 3
1.2.1 Requirementsfor Metal Catalyst 5
1.2.2 PhaseDiagram 6
1.2.3 Kinetics and Rate-DeterminingStep 8
1.2.4 Size of the Metal Catalyst 9
1.3 Growth of Nanowires by the VLS Mechanism and Current Issues for Optoelectronics 10
1.3.1 Growth of Semiconductor Nanowires by the VLS Mechanism 10
1.3.2 Issues Associated with the VLS Mechanism for Optoelectronics 11
1.4 Devices Based on the VLS Mechanism 27
1.5 Summary and Perspectives 33
References 35
2 Catalyst-Free Metal-Organic Vapor-Phase Epitaxy of ZnO and GaN Nanostructures for Visible Light-Emitting Devices 37 Chul-Ho Lee and Gyu-Chul Yi
2.1 Introduction 37
2.2 Catalyst-Free MOVPE of ZnO Nanorods 39
2.3 Position-ControlledGrowth of ZnO and GaN Nanostructures 46
2.4 Light-EmittingDevice Applications 53
2.5 Conclusionsand Perspectives 62
References 63
3 III–V Semiconductor Nanowires on Si by Selective-Area Metal-Organic Vapor Phase Epitaxy 67 Katsuhiro Tomioka and Takashi Fukui
3.1 Introduction 67
3.2 OpticalApplicationofSemiconductorNWs 69
3.3 Growth of NWs by Selective-Area Metal-Organic Vapor Phase Epitaxy 71
3.3.1 Process of SA-MOVPE for NW Growth 72
3.3.2 Crystal Shape in SA-MOVPE 73
3.3.3 Growth of Core-Shell Structures 76
3.4 Heteroepitaxyof III–VNWs on Si Substrate 77
3.4.1 Basic Concept for Selective-Area Growth of III–VNWs on Si 79
3.4.2 Selective-Area Growth of InAs NWs on Si 81
3.4.3 Selective-Area Growth of GaAs NWs on Si 85
3.4.4 Size Dependence of the GaAs NW Growth on Si 86
3.4.5 Growth of GaAs/AlGaAs Core-Shell NWs on Si 88
3.5 FabricationofIII–VNW-basedLEDsonSiSurface 89
3.5.1 Growth of AlGaAs/GaAs/AlGaAs Double-HeterostructuresinCMSNWsonSi 90
3.5.2 Fabricationof CMS NW-Based LEDs on Si 90
3.5.3 GaAs/GaAsP CMS Structure and Multi-Quantumwell Layers for Laser Diodes 93
3.6 Summary 96
References 97
4 Synthesis and Properties of Aluminum Nitride Nanostructures 103 Daniel S.P. Lau and X.H. Ji
4.1 Introduction 103
4.1.1 Overview 103
4.1.2 Propertiesof AlN 104
4.2 SynthesisofAlNNanostructures 105
4.2.1 Vapor–Liquid–SolidGrowth 106
4.2.2 Vapor–SolidGrowth 109
4.3 Doping of AlN Nanostructures 117
4.4 Physical Propertiesof AlN Nanostructures 120
4.4.1 Structural PropertiesRaman Spectra 120
4.4.2 Optical Propertiesof AlN Nanostructures 123
4.4.3 FerromagneticProperties 129
4.5 ConcludingRemarksandPerspectives 132
References 133
5 Semiconductor Nanowire Heterostructures: Controlled Growth and Optoelectronic Applications 137 Chuanwei Cheng and Hong Jin Fan
5.1 Introduction 137
5.2 SynthesisofSemiconductorNWHeterostructures 139
5.2.1 SegmentedNW Heterostructures 139
5.2.2 Coaxial and Core/Multishell Semiconductor NW Heterostructures 145
5.2.3 Branched SemiconductorNW Heterostructures 150
5.3 Applicationsof SemiconductorNW Heterostructures 156
5.3.1 Optical Properties 156
5.3.2 Photovoltaics and Photoelectrochemical Water Splitting 157
5.3.3 Photodetectors 160
5.4 Conclusionsand Perspective 162
References 163
6 Hybrid Semiconductor Nanostructures with Graphene Layers 167 Won Il Park, Jung Min Lee, Dong Hyun Lee, and Gyu-ChulYi
6.1 Introduction 167
6.2 Graphene: 2D Materials for TransparentConductingLayers 169
6.2.1 Physical Properties of Graphene 169
6.2.2 Synthesis and Application of Graphene 171
6.3 Hybrid SemiconductorNanostructureswith Graphene: 0D–2D,1D–2D,and2D–2DHybrids 175
6.3.1 Hybrid Lamellar Composites: 2D–2D Hybrids 175
6.3.2 Nanoparticle–GrapheneHybrids: 0D–2DHybrids 177
6.3.3 Nanorod–GrapheneHybrids:1D–2DHybrids 177
6.4 1D–2D Nanorod–GrapheneHybrids for Electronics and Optoelectronics 179
6.4.1 Vertical 1D Nanostructureson 2D Graphene 180
6.4.2 2D Grapheneon Vertical 1D Nanostructures 183
6.4.3 Multistage Hybrid Nanoarchitectures: Pillared Graphene 186
6.4.4 Applicationof1D–2DHybridsforElectronics and Optoelectronics 187
6.5 Conclusions 192
References 193
7 Microstructural Properties of Nanostructures 197 Sang-Wook Han
7.1 Introduction 197
7.2 X-ray AbsorptionFine Structure 199
7.3 ZnO Nanoparticles 203
7.4 ZnONanorods 209
7.5 Coaxial GaN/ZnO Nanorods 212
7.6 ZnO Nanorodson GaN and Al2O3 Substrates 215
7.7 Conclusions 221
References 222
8 Luminescence Characterizations of Semiconductor Nanostructures 225 JinkyoungYoo
8.1 Introduction 225
8.2 Radiative Recombinationin 1D Semiconductor Nanostructures 226
8.3 Luminescence Characterizations of 1D Semiconductor Nanostructures 228
8.3.1 Local Probe Techniques 228
8.3.2 Luminescent Characteristics of SemiconductorNanostructures 234
8.4 The Limit of Luminescence Characterizations 246
8.5 Summary 248
References 249
9 Lasing Characteristics of Single and Assembled Nanowires 251
S.F. Yu
9.1 Introduction 251
9.2 Lasing Characteristics of Single Nanowires 252
9.2.1 Feedback Mechanism of Single-NanowireLasers 253
9.2.2 Modal Characteristics of Nanowires with Different Geometries 255
9.2.3 Near-and Far-Field Pro.les 260
9.2.4 CriteriatoAchieveStimulatedEmission 262
9.3 Lasing Characteristics of Assembled Nanowires 263
9.3.1 What is a Random Laser? 263
9.3.2 Feedback Mechanism of Random Lasers 264
9.3.3 Formation of Random Cavities Using AssembledNanowires 266
9.3.4 CriteriatoAchieveStimulatedEmission 270
9.4 Single and Assembled Nanowires Laser Diodes 272
9.4.1 Single-NanowireElectrically Driven Lasers 272
9.4.2 Electrically Pumped Nanowire Array Lasers 272
9.5 Conclusion and Discussion 275
References 277
10 Nanophotonic Device Application Using Semiconductor Nanorod Heterostructures 279 Takashi Yatsui, Gyu-ChulYi, and MotoichiOhtsu
10.1 Introduction 279
10.2 ZnO NanorodHeterostructurefor NanophotonicDevice 280
10.3 Near-Field Evaluation of Isolated ZnO Nanorod Single-Quantum-WellStructure for Nanophotonicdevice 280
10.4 A Nanophotonic AND-Gate Device Using ZnO NanorodDouble-Quantum-WellStructures 286
10.5 Conclusions 294
References 295
11 Semiconductor Nanowires for Solar Cells 297
S.T. Picraux, J. Yoo, I.H. Campbell, S.A. Dayeh,
and D.E. Perea
11.1 Introduction 297
11.2 KeyConcepts 300
11.3 Nanowire Fabrication 302
11.4 Overview of Nanowire Solar Cell Studies 303
11.5 EnhancedOpticalAbsorptioninNanowireArrays 310
11.5.1 Basic Principles of NW Array Optics 311
11.5.2 ExperimentalDemonstrationsof Increased Absorption 314
11.6 OptoelectronicProperties of Radial Nanowire Diodes 316
11.7 Solar Cell Performance:Combined Optical and Electrical Properties 320
11.8 IntegrationStrategies for Nanowire Solar Cells 322
11.8.1 General Approaches 322
11.9 Conclusions 326
References 326
Index 329