随着社交网络、网络分析和智能型电子商务的兴起,传统的数据库系统显然已无法满足海量数据的管理需求。 作为一种新的处理模式,大数据系统应运而生,它使用多台机器并行工作,能够对海量数据进行存储、处理、分析,进而帮助用户从中提取对优化流程、实现高增长率的有用信息,做更为精准有效的决策。 但不可忽略的是,它也引入了大多数开发者并不熟悉的、困扰传统架构的复杂性问题。本书将教你充分利用集群硬件优势的Lambda架构,以及专门用来捕获和分析网络规模数据的新工具,来创建这些系统。它将描述一个可扩展的、易于理解大数据系统的方法——可以由小团队构建并运行。本书共18章,除了介绍基本概念,其他章节采用“理论+示例”的方式来阐释相关概念,并使用现实世界中的工具加以论证。其中,第1章介绍了数据系统的原理,给出了Lambda架构的概述,并概述了构建任何数据系统的广义方法。第2~9章集中阐述Lambda架构的批处理层。第10章和第11章集中阐述服务层,让读者了解只批量写入的特定数据库——这些数据库比传统数据库更简单,它们具有出色的性能,并具备可操作性、稳健性等特点。第12~17章集中阐述速度层,让读者更明确地了解NoSQL数据库、流处理和管理增量计算的复杂性。 第18章通过综合回顾Lambda架构的相关知识,帮助读者了解增量批处理、基本Lambda架构的变种,以及如何充分利用资源。