注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术工业技术无线电电子学、电信技术数字信号处理(第二版 英文版)

数字信号处理(第二版 英文版)

数字信号处理(第二版 英文版)

定 价:¥55.00

作 者: (美)Richard G. Lyons(理查德 G. 莱昂斯)
出版社: 电子工业出版社
丛编项:
标 签: 工学 教材 研究生/本科/专科教材

购买这本书可以去


ISBN: 9787121309205 出版时间: 2017-02-01 包装: 平塑
开本: 页数: 304 字数:  

内容简介

  本书在Richard G. Lyons所著Understanding Digital Signal Processing, Second Edition的基础上进行了改编,针对通信类学校本科教学大纲,删除了教学中一般不涉及的内容,调整了章节顺序,并增加了z反变换、滤波器结构、线性相位FIR滤波器和其结构、模拟滤波器简介的内容,使教内容材更加完整。全书在概述了离散序列和系统的定义和实例之后,详细讨论了离散系统的特性、信号的离散化和离散卷积、z变换、离散时间傅里叶变换和离散傅里叶变换、快速傅里叶变换、数字滤波器结构、以及有限和无限脉冲响应数字滤波器的设计等基本概念和基本理论。书中涉及的数学知识以简明形式给出,深入浅出,易于理解。本书每章都增加了例题、习题和MATLAB例题,以便加强对每章内容的理解和掌握。

作者简介

  Richard G. Lyons毕业于美国加州阿克隆大学,曾任美国国家安全局和TRW(天合)汽车集团公司众多DSP系统的首席硬件工程师,负责系统设计、开发、测试和安装。曾任教于加利福尼亚大学塔克鲁兹校区,并发表过很多有关DSP的文章。作为IEEE Signal Processing Magazine的副主编,开设了DSP Tips & Tricks专栏并负责编辑。 Richard G. Lyons毕业于美国加州阿克隆大学,曾任美国国家安全局和TRW(天合)汽车集团公司众多DSP系统的首席硬件工程师,负责系统设计、开发、测试和安装。曾任教于加利福尼亚大学塔克鲁兹校区,并发表过很多有关DSP的文章。作为IEEE Signal Processing Magazine的副主编,开设了DSP Tips & Tricks专栏并负责编辑。

图书目录

Chapter 1 Discrete Sequences and Systems1
1.1 Discrete Sequences and Their Notation1
1.1.1 Discrete-time Signals2
1.1.2 Frequently Used Discrete Sequences7
1.2 Signal Amplitude, Magnitude, Power9
1.3 Signal Processing Operational Symbols10
1.4 Introduction to Discrete Linear Time-Invariant Systems12
1.5 Discrete Linear Systems12
1.5.1 Example of a Linear System12
1.5.2 Example of a Nonlinear System14
1.6 Time-Invariant Systems16
1.6.1 Example of a Time-Invariant System16
1.7 The Commutative Property of Linear Time-Invariant Systems17
1.8 The Causality Property of Linear Time-Invariant Systems18
1.9 The Stability Property of Linear Time-Invariant Systems18
1.10 Analyzing Linear Time-Invariant Systems19
1.11 Problems20
1.12 MATLAB Applications22
1.12.1 Applications22
1.12.2 Examples23
1.12.3 Exercises24
Chapter 2 Periodic Sampling25
2.1 Aliasing: Signal Ambiguity in the Frequency Domain25
2.2 Sampling Low-Pass Signals29
2.3 A Generic Description of Discrete Convolution32
2.3.1 Discrete Convolution in the Time Domain33
2.3.2 The Convolution Theorem36
2.3.3 Applying the Convolution Theorem39
2.4 Problems42
2.5 Matlab Applications43
2.5.1 Applications43
2.5.2 Examples44
2.5.3 Exercises46
Chapter 3 Z-Transform47
3.1 The z-Transform47
3.1.1 Poles and Zeros on the z-Plane and Stability49
3.1.2 The ROC of z-Transform50
3.1.3 The Properties of z-Transform53
3.2 The Inverse z-Transform55
3.2.1 General Expression of Inverse z-Transform55
3.2.2 Inverse z-Transform by Partial-Fraction Expansion58
3.3 Problems61
3.4 MATLAB Applications63
3.4.1 Applications63
3.4.2 Examples64
3.4.3 Exercises67
Chapter 4 The Discrete Fourier Transform68
4.1 Interpreting the DFT69
4.2 Understanding the DFT Equation71
4.2.1 DFT Example 174
4.3 DFT Properties81
4.3.1 DFT Symmetry81
4.3.2 DFT Linearity83
4.3.3 DFT Magnitudes83
4.3.4 DFT Frequency Axis84
4.3.5 DFT Shifting Theorem85
4.4 Inverse DFT87
4.5 DFT Leakage88
4.6 Windows94
4.7 DFT Resolution, Zero Padding, and Frequency-Domain Sampling101
4.8 Frequency Response104
4.9 Problems106
4.10 Matlab Applications107
4.10.1 Applications107
4.10.2 Examples108
4.10.3 Exercises111
Chapter 5 The Fast Fourier Transform112
5.1 Relationship of the FFT to the DFT112
5.2 FFT Alogrithm113
5.3 Derivation of the Radix-2 FFT Algorithm114
5.4 FFT Input/Output Data Index Bit Reversal120
5.5 Radix-2 FFT Butterfly Structures121
5.6 Efficiently Performing the FFT of Real Sequences127
5.6.1 Performing Two N-Point Real FFTs127
5.6.2 Performing a 2N-Point Real FFT133
5.7 Discrete Convolution using FFT137
5.7.1 Overlap-added138
5.7.2 Overlap-saved138
5.8 IFFT Algorithm140
5.9 Problems143
5.10 Matlab Applications144
5.10.1 Applications144
5.10.2 Examples144
5.10.3 Exercises146
Chapter 6 Filter Structure147
6.1 Block Structure147
6.2 Mason and Transpose Theorem149
6.2.1 Masons Rule149
6.2.2 Transpose Theorem150
6.3 Example of Filter Structures151
6.3.1 IIR Filter Structure151
6.3.2 FIR Direct Structure158
6.3.3 FIR Cascade Structure158
6.4 Problems159
6.5 Matlab Applications162
6.5.1 Applications162
6.5.2 Examples163
6.5.3 Exercises167
Chapter 7 Finite Impulse Response Filters168
7.1 An Introduction to Finite Impulse Response (FIR) Filters169
7.2 Properties of FIR Filters172
7.2.1 Convolution in FIR Filters172
7.2.2 Linear phase FIR Filter181
7.2.3 Linear Phase FIR Filter Structure188
7.2.4 FIR Filter Poles and Zeros194
7.3 Low-Pass FIR Filter Design196
7.3.1 Window Design Method197
7.3.2 Windows Used in FIR Filter Design204
7.3.3 Examples to Design Linear Phase Low-Pass FIR Filter210
7.4 Examples to Design Other Types Linear Phase FIR Filter215
7.5 Problems220
7.6 Matlab Exercises223
7.6.1 Applications223
7.6.2 Examples223
7.6.3 Exercises224
Chapter 8 Infinite Impulse Response Filters226
8.1 An Introduction to Infinite Impulse Response Filters227
8.2 The Laplace Transform229
8.2.1 Poles and Zeros on the s-Plane and Stability234
8.3 Analog Low-Pass Filters239
8.3.1 Introduction240
8.3.2 Approximation of analog filter characteristics240
8.3.3 Butterworth Approximation242
8.3.4 Chebyshev Approximation247
8.4 Impulse Invariance IIR Filter Design Method253
8.4.1 Impulse Invariance Design Method 1 Example258
8.4.2 Impulse Invariance Design Method 2 Example260
8.5 Bilinear Transform IIR Filter Design Method266
8.5.1 Bilinear Transform Design Example271
8.6 Low-Pass IIR Filter Design274
8.6.1 Example of Low-Pass IIR Digital Filter Design274
8.6.2 a Brief Comparison of IIR and FIR Filters277
8.7 Other Types IIR Filter Design278
8.8 Problems284
8.9 Matlab Exercises286
8.9.1 Functions of IIR Design 286
8.9.2 Examples287
8.9.3 Exercises288

本目录推荐