第1章遗传算法 1.1遗传算法基础 1.1.1遗传算法概述 1.1.2编码 1.1.3适值函数 1.1.4遗传操作 1.1.5应用于非线性*优化问题 1.2遗传算法应用于组合优化问题的实例 1.2.1配词问题 1.2.2背包问题 1.3混合遗传算法 1.3.1lshGA 1.3.2flchGA 1.4参考文献 第2章网络模型基础 2.1*短路径模型 2.1.1*短路径问题数学模型 2.1.2基于优先级的遗传算法解法 2.1.3数值计算 2.2*大流量模型 2.2.1*大流量问题的数学模型 2.2.2基于优先级编码的遗传算法 2.2.3数值计算 2.3*小费用流模型 2.3.1*小费用流问题的数学模型 2.3.2基于优先级编码的遗传算法 2.3.3数值计算 2.4*小生成树模型 2.4.1*小生成树问题的数学模型 2.4.2基于PrimPred的遗传算法解法 2.4.3数值计算 2.5参考文献 第3章物流网络模型 3.1物流模型 3.1.1配送计划模型 3.1.2基于矩阵的遗传算法解法 3.1.3基于生成树的遗传算法解法 3.1.4数值计算 3.2两阶段物流模型 3.2.1两阶段物流模型 3.2.2基于优先级的遗传算法解法 3.2.3数值计算 3.3车辆配送模型 3.3.1多配送中心带时间窗的车辆配送模型 3.3.2基于遗传算法的解法 3.3.3数值计算 3.4工厂—配送中心物流模型 3.4.1PDC物流网络数学模型 3.4.2基于优先级的遗传算法解法 3.4.3数值计算 3.5参考文献 第4章多目标遗传算法 4.1多目标优化模型概要 4.1.1多目标优化问题 4.1.2Pareto*优解 4.2多目标遗传算法概要 4.2.1多目标遗传算法的处理过程 4.2.2向量评价遗传算法 4.2.3评价值共享 4.3多目标遗传算法过程 4.3.1Pareto排序评价方法 4.3.2多目标函数加权和评价方法 4.3.3多目标函数的加权及保存精英策略的引入 4.4Pareto*优解的评价 4.4.1参照解集S* 4.4.2求得的Pareto*优解数量|Sj| 4.4.3获得Pareto*优解个体数比例RNDS(Sj) 4.4.4Pareto*优解集与参照解集间的距离D1R 4.4.5各目标函数轴的*大值, *小值, 平均值IMMA 4.5多目标遗传算法的数值计算 4.5.1数值计算实例 1 4.5.2数值计算实例 2 4.6参考文献 第5章多目标网络模型 5.1*小费用*大流量网络模型 5.1.1*小费用*大流量网络的数学模型 5.1.2基于优先级的遗传算法解法 5.1.3数值计算 5.2多目标供应链网络模型 5.2.1多目标供应链网络数学模型 5.2.2基于优先级的遗传算法求解 5.2.3数值计算 5.3生产物流系统网络模型 5.3.1生产物流系统的数学模型 5.3.2基于随机值的多阶段决策遗传算法的解法 5.3.3数值计算 5.4通信系统可靠性网络 5.4.1系统瘫痪率和总成本*小化的数学模型建立 5.4.2基于混合多目标遗传算法的解法 5.4.3数值计算 5.5参考文献