第1章 从不确定的信息中作出判断..............................................1
序欧 杰 辛普森审判与德肖维茨教授的辩护主张..................1
1.先来掷骰子.......................................................................3
2.赌博中的不败之法.............................................................4
3.条件概率与贝叶斯定理......................................................8
4.乳腺癌检查是否没有意义?.............................................. 10
5.用数学来“学习经验”....................................................... 13
6.核电站重大事故再次发生的概率....................................... 15
7.欧 杰 辛普森真的杀害了妻子吗?................................ 18
第2章 回归基本原理................................................................ 21
序创新与创造的必要条件.................................................... 21
1.加法、乘法与运算三定律................................................. 22
2.减法与0的发现............................................................... 25
3.(.1)×(.1) 为何等于1 ? ................................................ 29
4.分数与无限分割.............................................................. 32
5.假分数→带分数→连分数............................................... 33
6.用连分数制作历法........................................................... 35
7.过去不被认可的无理数.................................................... 37
8.二次方程的华丽历史........................................................ 43
用数学的语言看世界
第3章 大数字并不恐怖............................................................. 49
序最初的原子弹爆炸实验与“费米问题”............................... 49
1.大气中的二氧化碳究竟增加了多少.................................... 51
1.1 人类消耗了多少能量................................................ 51
1.2 人类排放了多少二氧化碳......................................... 52
2.遇到大数字不必慌张........................................................ 53
3.让天文学家寿命倍增的秘密武器....................................... 56
4.复利最大化的存款方法.................................................... 59
5.让银行存款翻倍需要多少年.............................................. 61
6.用对数透视自然法则........................................................ 64
第4章 不可思议的素数............................................................. 69
序纯粹数学的精华.............................................................. 69
1.埃拉托斯特尼筛法与素数的发现....................................... 72
2.素数有无穷个................................................................. 74
3.素数的分布存在规律........................................................ 77
4.用素数判定“帕斯卡三角形”............................................. 79
5.通过费马检测就是素数?................................................. 82
6.保护通信秘密的“公钥密码”............................................. 85
7.公钥密码的钥匙,欧拉定理.............................................. 87
8.信用卡卡号SSL传输的原理............................................. 90
第5章 无限世界与不完备性定理............................................... 97
序欢迎来到加州旅馆!........................................................ 97
11=0.99999...让人难以接受?...................................... 107
2.阿喀琉斯永远追不上乌龟?............................................ 110
3.“我正在说谎”............................................................... 112
4.“不在场证明”与“反证法”............................................. 114
5.哥德尔不完备性定理...................................................... 115
第6章 测量宇宙的形状........................................................... 121
序古希腊人如何测量地球周长?........................................ 121
1.基础中的基础,三角形的性质........................................ 125
1.1 证明三角形内角和为180°..................................... 127
1.2 让人终生难忘的“勾股定理”证明............................ 130
2.笛卡儿坐标与划时代的创想............................................ 134
3.六维、九维、十维......................................................... 138
4.欧几里得公理不成立的世界............................................ 140
5.唯独平行公理不成立的世界............................................ 142
6.不用外部观测即可得知形状的“神奇定理”....................... 145
7.画一个边长为100亿光年的三角形................................... 148
第7章 微分源于积分.............................................................. 153
序来自阿基米德的书信...................................................... 153
1.为何先从积分开始?...................................................... 155
2.面积究竟如何计算......................................................... 156
3.任何形状都OK,阿基米德的夹逼定理............................ 158
4.积分究竟计算什么......................................................... 160
5.积分与函数................................................................... 164
6.飞矢不动?................................................................... 167
7.微分是积分的逆运算...................................................... 169
8.指数函数的微分与积分.................................................. 171
第8章 真实存在的“假想数字”............................................... 175
序假想的朋友,假想的数字............................................... 175
1.平方为负的奇怪数字...................................................... 176
2.从一维的实数到二维的复数............................................ 179
3.复数的乘法运算“旋转与伸长”....................................... 185
4.从加法导出的加法定理.................................................. 189
5.用方程解决几何问题...................................................... 191
6.三角函数、指数函数与欧拉公式..................................... 195
第9章 测量“难”与“美”........................................................ 201
序伽罗瓦,20年的生涯与不灭功绩..................................... 201
1.图形的对称性是什么...................................................... 206
2.“群”的发现.................................................................. 210
3.二次方程求根公式的秘密............................................... 214
4.三次方程为何可解......................................................... 218
5.方程可解是什么意思...................................................... 224
6.五次方程与正二十面体.................................................. 227
7.伽罗瓦最后的书信......................................................... 229
8.方程的“难度”与图形的“美”......................................... 230
9.拥有第二个灵魂............................................................ 233
后记......................................................................................... 237