《不动点方法的理论及应用》专注于应用半序以及不动点指数讨论不动点问题。第1章介绍一般的半序集和与选择公理等价的Zorn引理,讨论赋范线性空间中具有不同性质的锥及其导出的半序,完整地说明锥的性质之间的关系,给出增算子不动点定理不依赖于Zorb引理的证明。第2章介绍连续算子的延拓和收缩核,论述全连续算子延拓和不动点指数的内容,重点在于一些泛函形式拉伸与压缩型条件下不动点指数的计算,叙述全连续算子的一些不动点定理。第3章介绍不动点方法在几类微分边值问题非平凡解研究中的应用。第4章的内容是非紧性测度和非紧算子的不动点。《不动点方法的理论及应用》适合非线性泛函分析相关领域的研究人员、研究生和高年级本科生阅读和参考。