本书全面系统地讲解了MATLAB金融算法设计应用,以及金融数据挖掘中趋向和发展趋势指标,并结合具体的机器学习算法分析,让读者深入学习和掌握MATLAB金融数据机器学习算法。本书注重实战,通过大量的案例,帮助读者更好地理解本书内容。本书分为2篇,共15章。主要内容有:MATLAB入门与提高、MATLAB高级应用、时间序列数据处理、量化投资趋向指标、量化投资反趋向指标、BP神经网络工具箱上证指数预测、BP神经网络工具箱多指标预测、RBF神经网络多指标预测、Hopfield神经网络多指标预测、马尔可夫(Markov)链上证指数预测、灰色理论下的上证指数预测、指数平滑下的上证指数预测、支持向量机SVM下的涨跌预测、贝叶斯(Bayes)网络多指标预测、Pareto多目标优化分析。本书适合所有想全面学习MATLAB金融分析设计的人员阅读,也适合各种使用MATlAB进行开发的工程技术人员使用。另外,对于各高校师生解决问题、进行课堂教学等,也是一本不可或缺的必备参考书。同时本书也适合MATLAB爱好者学习使用。本书结合网络实际,针对网上讨论的大部分疑难问题,书中均有涉及。