目录第1章绪论1.1引言1.2基本概念1.2.1回归、分类、聚类1.2.2监督学习、非监督学习、半监督学习、强化学习1.2.3感知机、神经网络1.3发展历程1.4相关学者与会议或赛事1.5本章小结参考文献第2章回归2.1线性回归2.1.1问题描述2.1.2问题求解2.1.3工具实现2.2逻辑回归2.2.1问题描述2.2.2问题求解2.2.3工具实现2.3本章小结参考文献第3章人工神经网络3.1Rosenblatt感知机3.1.1训练方法3.1.2算法实例3.1.3梯度下降3.2人工神经网络3.2.1网络架构3.2.2训练方法3.2.3算法实例3.3本章小结参考文献深度学习:入门与实践目录第4章Caffe简介4.1CNN原理4.1.1卷积4.1.2池化4.1.3LeNet54.2Caffe架构4.2.1Blob类4.2.2Layer类4.2.3Net类4.2.4Solver类4.3Caffe应用实例4.3.1车型识别4.3.2目标检测4.4本章小结参考文献第5章TensorFlow简介5.1TensorFlow架构5.2TensorFlow简单应用5.2.1TensorFlow安装5.2.2线性回归5.3TensorFlow高级应用5.3.1MNIST手写数字识别5.3.2车型识别5.4本章小结参考文献第6章强化学习简介6.1强化学习基本原理6.2AlphaGo基本架构6.3其他趣味应用6.4本章小结参考文献后记