目录
第 1章引言及基础知识1
11引言1
111时间序列的定义 2
112时间序列的分类5
113时间序列分析的方法回顾6
12基本概念7
121时间序列与随机过程 7
122概率分布族及其特征 8
123平稳时间序列的定义 10
124平稳时间序列的一些性质 11
125平稳性假设的意义 12
13时间序列建模的基本步骤 14
131模型识别 14
132模型估计 15
133模型检验 15
134模型应用 16
14 R语言入门 17
141 R语言简介 17
142 R的安装 17
143 R的基本操作 18
15数据预处理 25
151时序图与自相关图的绘制 26
IV 应用时间序列分析
152数据平稳性的图检验 30
153数据的纯随机性检验 34
习题 1 40
第 2章平稳时间序列模型及其性质 42
21差分方程和滞后算子 42
211差分运算与滞后算子 42
212线性差分方程 44
22自回归模型的概念和性质 46
221自回归模型的定义 46
222稳定性与平稳性 49
223平稳自回归模型的统计性质 53
23移动平均模型的概念和性质 62
231移动平均模型的定义 62
232移动平均模型的统计性质 62
24自回归移动平均模型的概念和性质 68
241自回归移动平均模型的定义 68
242平稳性与可逆性 69
243 Green函数与逆函数 69
244 ARMA(p, q)模型的统计性质 70
习题 2 72
第 3章平稳时间序列的建模和预测 74
31自回归移动平均模型的识别 74
311自相关函数和偏自相关函数的估计 75
312模型识别的方法 75
32参数估计 82
321矩估计法 82
322最小二乘估计 86
目录 V
323极大似然估计 89
324实例 90
33模型的检验与优化 93
331残差的检验 93
332过度拟合检验 94
333模型优化 96
34序列的预测 101
341预测准则 101
342自回归移动平均模型的预测 104
习题 3 110
第 4章数据的分解和平滑 113
41序列分解原理 113
411平稳序列的 Wold分解 113
412一般序列的 Cramer分解 115
413数据分解的形式 115
42趋势拟合法 117
421线性拟合 118
422曲线拟合 120
43移动平均法 122
431中心化移动平均法 123
432简单移动平均法 124
433二次移动平均法 125
44指数平滑方法 127
441简单指数平滑方法 127
442 Holt线性指数平滑方法 128
443 Holt-Winters指数平滑方法 129
45 季节效应分析 132
习题 4 135
VI 应用时间序列分析
第 5章非平稳时间序列模型 137
51非平稳序列的概念 137
511非平稳序列的定义 137
512确定性趋势 138
513随机性趋势 139
52趋势的消除 140
521差分运算的本质 140
522趋势信息的提取 141
523过差分现象 143
53求和自回归移动平均模型 146
531求和自回归移动平均模型的定义 146
532求和自回归移动平均模型的性质 147
533求和自回归移动平均模型的建模 148
534求和自回归移动平均模型的预测理论 154
54残差自回归模型 157
541残差自回归模型的概念 157
542残差的自相关检验 158
543残差自回归模型建模 160
习题 5 165
第 6章季节模型 167
61简单季节自回归移动平均模型 167
611季节移动平均模型 167
612季节自回归模型 168
62乘积季节自回归移动平均模型 169
63季节求和自回归移动平均模型 171
631乘积季节求和自回归移动平均模型 171
632乘积季节求和自回归移动平均模型的建模 172
64季节求和自回归移动平均模型的预测 176
目录 VII
习题 6 179
第 7章单位根检验和协整 182
71伪回归 182
711“伪回归”现象 182
712非平稳对回归的影响 183
72单位根检验 184
721理论基础 184
722 DF检验 187
723 ADF检验 193
724 PP单位根检验 201
725 KPSS单位根检验 203
73协整 204
731协整的概念 205
732协整检验 206
74 误差修正模型 214
习题 7 216
第 8章异方差时间序列模型 219
81简单异方差模型 219
811异方差的现象 219
812方差齐性变换 221
82自回归条件异方差模型 224
821自回归条件异方差模型的概念 224
822自回归条件异方差模型的估计 226
823自回归条件异方差模型的检验 227
83 广义自回归条件异方差模型 232
习题 8 237
参考文献 239