* 1章 简明学习问题… ……………………………………………………1
1.1 归纳推理和演绎推理的基础……………………………………………………2
1.2 你曾遇到这些事情吗?…………………………………………………………3
1.3 释放归纳的力量…………………………………………………………………3
1.4 推断的阴阳之道…………………………………………………………………4
1.5 学习问题的三大要素……………………………………………………………4
1.6 从数据中学习的目标……………………………………………………………6
1.7 阐明选择标准……………………………………………………………………7
1.8 学习任务的选择…………………………………………………………………8
附注………………………………………………………………………………………9
* 2章 监督学习………………………………………………………13
2.1 有效分类的基本要素……………………………………………………………13
2.2 如何确定假设类别的答案………………………………………………………15
2.3 监督学习的两个核心方法………………………………………………………16
2.3.1 生成算法的关键…………………………………………………………16
2.3.2 理解判别算法……………………………………………………………17
2.4 什么是贝叶斯分类器……………………………………………………………17
误差下界…………………………………………………………………………19
2.5 评估贝叶斯误差的两种简单技巧………………………………………………19
2.5.1 Mahalanobis技巧……………………………………………………19
2.5.2 Bhattacharyya技巧…………………………………………………20
2.6 如何释放朴素贝叶斯分类器的力量……………………………………………21
一个建立直觉的例子……………………………………………………………22
2.7 朴素贝叶斯分类器的R极简建立方法…………………………………………24
2.7.1 一个模拟的例子… …………………………………………………………24
2.7.2 甲状腺数据的分析………………………………………………………28
2.8 如何利用k-近邻算法的价值…………………………………………………33
2.8.1 深化理解的例子…………………………………………………………34
2.8.2 k近邻的R直接方法……………………………………………………37
2.8.3 如何决定k的* 优值……………………………………………………42
2.9 线性判别分析的关键……………………………………………………………42
2.9.1 求解广义特征值问题…………………………………………………44
2.9.2 R判别分析的基本要素…………………………………………………45
2.9.3 检查你想要的模型类型………………………………………………49
2.9.4 不要止步于线性判别分析………………………………………………50
2.10 逻辑回归分类的秘密……………………………………………………………51
建立R逻辑回归分类器的简便方法……………………………………………53
2.11 激励创意和激情的超级好主意…………………………………………………57
附注………………………………………………………………………………………59
第3章 无监督学习……………………………………………………68
3.1 无监督学习简介…………………………………………………………………68
3.2 两种核心方法及其工作原理……………………………………………………69
3.3 无监督学习的应用技术及R实现………………………………………………70
3.4 无监督学习的典型例子,你可以模仿学习……………………………………85
3.4.1 数据(图像)预处理……………………………………………………86
3.4.2 处理图像中的噪声………………………………………………………86
3.4.3 颅骨“剥离”……………………………………………………………87
3.4.4 完 美组合…………………………………………………………………87
附注……………………………………………………………………………………89
第4章 半监督学习……………………………………………………91
4.1 未标记数据的作用………………………………………………………………92
4.2 一致性假设……………………………………………………………………94
4.3 尝试半监督学习的极简方法…………………………………………………94
4.4 自学习算法………………………………………………………………………95
4.5 基于半监督模型的R学习……………………………………………………98
4.6 使用土地分类掌握这种实践说明… ……………………………………………102
附注……………………………………………………………………………………105
第5章 统计学习理论…………………………………………………108
5.1 Vapnik-Chervonenkis泛化界……………………………………………109
5.2 什么是Vapnik-Chervonenkis维…………………………………………110
5.3 结构风险* 小化的关键………………………………………………………113
5.4 实践中使用统计学习理论的* 佳建议………………………………………114
5.5 如何精通支持向量机…………………………………………………………115
5.6 支持向量机的本质……………………………………………………………116
松弛的处理……………………………………………………………………117
5.7 如何建立R支持向量机………………………………………………………118
附注……………………………………………………………………………………120
第6章 模型选择………………………………………………………122
6.1 模型的快速改进………………………………………………………………122
6.2 一个价值500万美元的小错误………………………………………………124
6.3 “天下没有免费午餐”定理之三大关键教训…………………………………125
6.4 什么是偏差和方差权衡………………………………………………………127
6.4.1 可约误差………………………………………………………………128
6.4.2 偏差……………………………………………………………………129
6.4.3 方差……………………………………………………………………130
6.5 你的模型犯过这种错吗?……………………………………………………131
6.6 留出技术的秘密………………………………………………………………132
6.7 有效交叉验证的艺术…………………………………………………………134
6.7.1 k-折交叉验证………………………………………………………134
6.7.2 一个R案例……………………………………………………………135
6.7.3 留一验证………………………………………………………………138
附注……………………………………………………………………………………140
恭喜你!……………………………………………………………………142