目录
前言
一些常规约定
第1章 多项式理想的Grobner基 1
1.1 问题的引入 1
1.2 单项式序 8
1.3 单项式理想 12
1.4 除法算法 15
1.5 Grobner基 19
1.6 Buchberger定理 22
1.7 Buchberger算法 28
1.8 极小与约化Grobner基 33
1.9 消元序下的Grobner基与消元定理 38
第2章 对仿射K-代数的初等应用 45
2.1 交换K-代数与代数同态映射简介 45
2.2 对多项式理想几个结构性质的应用 48
2.3 求解多项式理想I∩J的生成元集 52
2.4 对仿射K-代数几个结构性质的应用 54
2.5 对仿射K-代数同态映射的应用 63
2.6 对仿射K-代数中K-代数元的一个应用 70
第3章 在代数几何中的初等应用 73
3.1 初等代数几何的一些基本元素简介 73
3.2 求解有限 79
3.3 求解的Zariski闭包 84
3.4 对多项式映射的应用 87
第4章 Grobner基的更多应用简介 92
4.1 对域的有限代数扩张的一个应用 92
4.2 在整数优化中的应用举例 100
4.3 在图论中的应用举例 111
第5章 附录 120
5.1 Hilbert零点定理的证明 120
5.2 消元理想的零点扩张原理 128
5.3 分式环的构造 139
参考文献 146
索引 147