注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络行业软件及应用PaddlePaddle与深度学习应用实战

PaddlePaddle与深度学习应用实战

PaddlePaddle与深度学习应用实战

定 价:¥65.00

作 者: 程天恒 著
出版社: 电子工业出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787121342479 出版时间: 2018-05-01 包装: 平装
开本: 16开 页数: 232 字数:  

内容简介

  深度学习是目前人工智能研究中前沿、有效的一项技术,主要通过构建深度神经网络解决视觉、自然语言处理、语音识别等诸多领域的问题。百度在2016年发布了国内**开源深度学习框架PaddlePaddle,简化了深度学习算法的实现步骤,提供了灵活、易用的接口,同时支持分布式训练。 本书由简单的例子引入深度学习和PaddlePaddle框架,介绍了PaddlePaddle的安装、测试与基本使用,并结合PaddlePaddle接口介绍深度学习的基础知识,包括常用的神经网络和算法。最后,通过一系列深度学习项目实例介绍PaddlePaddle在各种场景和问题中的应用,让读者由浅至深地理解并运用深度学习解决实际问题。

作者简介

  程天恒,从PaddlePaddle框架开源开始使用至今,积累了丰富的使用经验。参加过亚洲超级计算竞赛、RDMA编程比赛等,并在这些比赛中获得过奖项,目前专注于深度学习科研工作,主要研究领域为计算机视觉、深度强化学习。

图书目录

第1 章 深度学习简介 .............................................................................................................. 1
1.1 初见 ....................................................................................................................................... 1
1.2 机器学习 ............................................................................................................................... 1
1.3 神经网络 ............................................................................................................................... 3
1.4 深度学习介绍 ....................................................................................................................... 7
1.5 深度学习应用 ....................................................................................................................... 8
1.6 深度学习框架 ..................................................................................................................... 12
1.7 深度学习的未来 ................................................................................................................. 15
第2 章 PaddlePaddle 简介 ................................................................................................... 16
2.1 安装PaddlePaddle ............................................................................................................... 16
2.2 测试PaddlePaddle ............................................................................................................... 29
第3 章 初探手写数字识别 .................................................................................................... 31
第4 章 PaddlePaddle 基本用法 ........................................................................................... 44
4.1 数据准备 ............................................................................................................................. 44
4.2 原始数据读取及预处理 ..................................................................................................... 44
4.3 PaddlePaddle 训练数据 ....................................................................................................... 46
4.4 模型配置 ............................................................................................................................. 52
4.5 激活函数 ............................................................................................................................. 58
4.6 优化方法 ............................................................................................................................. 64
4.7 损失函数 ............................................................................................................................. 72
4.8 均方损失函数 ..................................................................................................................... 73
4.9 交叉熵损失函数 ................................................................................................................. 73
4.10 Huber 损失函数 ................................................................................................................ 74
4.11 CRF 损失函数 ................................................................................................................... 74
4.12 CTC 损失函数 ................................................................................................................... 75
4.13 反向传播算法 ................................................................................................................... 75
第5 章 卷积神经网络 ............................................................................................................ 78
5.1 卷积神经网络 ..................................................................................................................... 78
5.2 实例学习 ............................................................................................................................. 87
5.3 拓展 ................................................................................................................................... 112
第6 章 循环神经网络 .......................................................................................................... 118
6.1 RNN 简介 .......................................................................................................................... 118
6.2 双向循环神经网络 ........................................................................................................... 121
6.3 循环神经网络使用场景 ................................................................................................... 127
6.4 预测sin 函数序列 ............................................................................................................. 129
6.5 拓展 ................................................................................................................................... 134
第7 章 PaddlePaddle 实战 ................................................................................................. 136
7.1 自编码器 ........................................................................................................................... 136
7.2 PaddlePaddle 实现自编码器 ............................................................................................. 137
7.3 实战OCR 识别(一) ..................................................................................................... 140
7.4 实战OCR 识别(二) ..................................................................................................... 150
7.5 情感分析 ........................................................................................................................... 164
7.6 Seq2Seq 及其应用 ............................................................................................................ 172
7.7 实现 ................................................................................................................................... 178
7.8 Image Caption .................................................................................................................... 194
第8 章 深度学习新星:生成对抗网络GAN ....................................................................... 208
8.1 生成对抗网络(GAN) ................................................................................................... 208
8.2 GAN 的其他应用 .............................................................................................................. 213
第9 章 强化学习与AlphaGo .............................................................................................. 216

本目录推荐