《数据挖掘与应用:以SAS和R为工具(第二版)》是数据挖掘领域的经典教材,基于北京大学光华管理学院“数据挖掘与应用”课程。书中系统、全面地介绍了数据挖掘领域的理论、技术工具以及实践方法。主要内容包括:数据挖掘方法论、数据理解和数据准备、缺失数据、关联规则挖掘、多元统计降维、聚类分析、线性回归和广义线性回归、回归模型规则化、神经网络、决策树、支持向量机、模型评估、模型组合、协同过滤等。 书中在每种数据挖掘技术后,均辅以大量医疗、金融、营销、保险、政府部门等应用案例,并均配有相关应用的SAS和R语言代码,以及视频课程二维码。 第二版更新:第二版在头一版的基础上,增加了缺失数据、回归模型中的规则化和变量选择、卷积神经网络、支持向量机、协同过滤这5章内容。在已有各章内,本书亦增加了新的内容和示例。近些年来,R因为其自由、免费、开源,已经发展为数据分析领域强大的软件之一。因此,本书除了继续展示SAS程序,还增加了R程序。