本书将基本概念与实例相结合,由浅入深、循序渐进地对大数据思维、技术和应用做了全面系统的介绍。全书共12章,分为大数据基础篇、大数据存储篇、大数据处理篇、大数据挖掘篇和大数据应用篇。大数据基础篇的内容涵盖了大数据思维理念、大数据的产生与作用、大数据基本概念、大数据采集工具Flume和Scribe、大数据爬虫工具Nutch和Scapy、大数据预处理工具Kettle、大数据处理架构Hadoop;大数据存储篇的内容包含分布式文件存储系统HDFS、海量数据存储数据库系统HBase和海量数据仓库系统Hive;大数据处理篇主要介绍了分布式并发计算批处理模式MapReduce,基于内存的快速处理模式Spark,以及基于实时数据流的实时处理模式Spark Streaming;大数据挖掘篇主要对分类、预测、聚类和关联等各类大数据挖掘算法的原理和使用场景进行了描述,并使用Spark MLlib提供的机器学习算法进行了实例讲解;大数据应用篇分别从大数据场景应用的横向和纵向出发,介绍了大数据在各个功能领域的应用场景和在各个行业的应用场景。