第1篇 监督掌习
第1章 统计学习及监督学习概论
1.1 统计学习
1.2 统计学习的分类
1.2.1 基本分类
1.2.2 按模型分类
1.2.3 按算法分类
1.2.4 按技巧分类
1.3 统计学习方法三要素
1.3.1 模型
1.3.2 策略
1.3.3 算法
1.4 模型评估与模型选择
1.4.1 训练误差与测试误差
1.4.2 过拟合与模型选择
1.5 正则化与交叉验证
1.5.1 正则化
1.5.2 交叉验证
1.6 泛化能力
1.6.1 泛化误差
1.6.2 泛化误差上界
1.7 生成模型与判别模型
1.8 监督学习应用
1.8.1 分类问题
1.8.2 标注问题
1.8.3 回归问题
本章概要
继续阅读
习题
参考文献
第2章 感知机
2.1 感知机模型
2.2 感知机学习策略
2.2.1 数据集的线性可分性
2.2.2 感知机学习策略
2.3 感知机学习算法
2.3.1 感知机学习算法的原始形式
2.3.2 算法的收敛性
2.3.3 感知机学习算法的对偶形式
本章概要
继续阅读
习题
参考文献
第3章 k近邻法
3.1 k近邻算法
3.2 k近邻模型
3.2.1 模型
3.2.2 距离度量
3.2.3 k值的选择
3.2.4 分类决策规则
3.3 k近邻法的实现:kd树
3.3.1 构造kd树
3.3.2 搜索kd树
本章概要
继续阅读
……
第2篇 无监督掌习
附录
索引