《深度学习入门 基于Python的理论与实现》本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等疑难的问题。 本书适合深度学习初学者阅读,也可作为高校教材使用。《深度学习的数学》基于丰富的图示和具体示例,通俗易懂地介绍了深度学习相关的数学知识。第1章介绍神经网络的概况;第2章介绍理解神经网络所需的数学基础知识;第3章介绍神经网络的*优化;第4章介绍神经网络和误差反向传播法;第5章介绍深度学习和卷积神经网络。书中使用Excel进行理论验证,帮助读者直观地体验深度学习的原理。《Python深度学习》本书由Keras之父、现任Google人工智能研究员的弗朗索瓦?肖莱(Franc.ois Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,包括计算机视觉、自然语言处理、产生式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。