本书从逻辑上可分为两大部分。 第一部分是Python编程基础(第1~4章),介绍了Python环境搭建、Python基础语法、控制语句、函数、面向对象编程等。第1章旨在让读者从全局把握Python,了解利用Python进行智能数据分析的优势,并详细介绍了Python环境搭建与配置,同时还对两个常用集成开发环境做了详细介绍。第2章先对Python固定语法做了介绍,包括编码声明、注释、缩进等;而后介绍了Python常见的数据类型,包括str、list、tuple、dict、set等;还介绍了Python常用运算符,包括算术运算符、逻辑运算符、成员运算符、位运算符等。第3章主要对控制语句做了详细介绍,包括条件语句和循环语句,同时还介绍了和条件语句类似的异常处理try-except-else语句。第4章主要介绍了Python的内置函数、自定义函数、面向对象编程以及第三方库的安装与使用方法。 第二部分是数据分析编程(第5~9章),主要对数据分析中常用的第三方库做了详细介绍,强调在Python中对应函数的使用方法及其结果的解释说明。内容涵盖数值分析库NumPy,数据处理库pandas,绘图库Matplotlib、Seaborn、Bokeh,机器学习与数据分析建模库scikit-learn。这一部分涉及数据读取、数据预处理、模型构建、模型评价、结果可视化,几乎涵盖了整个数据分析过程,充分而又详细地说明了Python数据分析的常用操作,相信在本书的指导下,读者能够从零开始快速数据入门分析。