注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术工业技术一般工业技术Plasmon and Plasmon-Exciton Hybrids for Surface

Plasmon and Plasmon-Exciton Hybrids for Surface

Plasmon and Plasmon-Exciton Hybrids for Surface

定 价:¥109.00

作 者: 孙萌涛,王鑫鑫,宗欢 著
出版社: 清华大学出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787302518570 出版时间: 2019-06-01 包装: 平装
开本: 16 页数: 258 字数:  

内容简介

  本书是基于作者多年在表面等离激元催化领域的科研成果,结合本领域的前沿科技进展,详述了表面等离激元-激子杂化在表面等离激元杂化领域的科研进展,详细全面地系统介绍。

作者简介

  主要从事基于表面等离激元增强的分子拉曼光谱的实验和理论研究。实现高真空针尖增强拉曼光谱仪,实现目标分子拉曼光谱的超灵敏检测,并揭示表面等离激元增强拉曼光谱的物理和化学机制。以通讯作者(或d一作者)在国际重要学术期刊上发表SCI 论文超过180 篇(其中ESI 高引论文8篇)。所有论文引用约5500多次,H-index 40。Researcher ID: B-1131-2008。10次应邀在国际重要期刊撰写本领域的综述。应邀撰写英文专著(科学出版社)2 本(d一作者)。2016 年,获辽宁省科学技术(自然科学)二等奖(个人第二)。2015 年,获辽宁省科学技术(自然科学)三等奖(个人第五)。

图书目录

CONTENTS

CONTENTS
CHAPTER 1Introduction

CHAPTER 2SPDriven Oxidation Catalytic Reactions

2.1SPDriven Oxidation Catalytic Reactions by SERS in
Atmosphere Environment

2.1.1Genuine SERS Spectrum of PATP

2.1.2SPDriven Oxidation Catalytic Reactions of PATP

2.1.3SPDriven Oxidation Catalytic Reactions on Metal/
Semiconductor Hybrids

2.2SPDriven Oxidation Catalytic Reactions by SERS in
Aqueous Environment

2.3SPDriven Oxidation Catalytic Reactions by TERS in
Ambient Environment

2.4SPDriven Oxidation Catalytic Reactions by TERS in
HV Environment

CHAPTER 3SPDriven Reduction Catalytic Reactions

3.1SPDriven Reduction Catalytic Reactions in Atmosphere
Environment

3.1.1SPDriven Reduction Catalytic Reactions by SERS in
Atmosphere Environment

3.1.2SPDriven Reduction Catalytic Reactions on Metal/
Semiconductor Hybrids

3.2SPDriven Reduction Catalytic Reactions by SERS in
Aqueous Environment

3.2.1Setup of Electrochemical SERS

3.2.2PotentialDependent Plasmon Driven Sequential
Chemical Reactions

3.2.3pHDependent Plasmon Driven Sequential Chemical
Reactions

3.2.4Electrooptical Tuning of Plasmon Driven Double
Reduction Interface Catalysis

3.3The Stability of Plasmon Driven Reduction Catalytic Reactions
in Aqueous and Atmosphere Environment

3.4SPDriven Reduction Catalytic Reactions by TERS

3.4.1SPDriven Reduction Catalytic Reactions by TERS in
Ambient Environment

3.4.2SPDriven Reduction Catalytic Reactions by TERS in
HV Environment

3.4.3Plasmon Hot Electrons or Thermal Effect on SPDriven
Reduction Catalytic Reactions in HV Environment

CHAPTER 4Photo or Plasmon Induced Oxidized and Reduced
Reactions

CHAPTER 5The Priority of Plasmon Driven Reduction or
Oxidation Reactions
5.1Plasmon Driven DiazoCoupling Reactions in Atmosphere
Environment

5.1.1Characterization of SERS and GrapheneMediated
SERS Substrate

5.1.2Selective Reduction Reactions of PNA on the Ag NPs
in Atmosphere Environment

5.1.3Selective Reduction Reactions of PNA on the Surface
of GAg NPs Hybrids in Atmosphere Environment

5.1.4Hot ElectronInduced Reduction Reactions of PNA
on GAg NWs Hybrids in Atmosphere Environment

5.2The Priority of Plasmon Driven Reduction or Oxidation in
Aqueous Environment

5.3The Priority of Plasmon Driven Reduction or Oxidation in
HV Environment

CHAPTER 6Plasmon Exciton Coupling Interaction for Surface
Catalytic Reactions
61Plasmon Exciton Coupling Interaction for Surface Oxidation
Catalytic Reactions

6.1.1Characterization of Ag NPsTiO2 Film Hybrids

6.1.2Ag NPsTiO2 Film Hybrids for Plasmon Exciton
Codriven Surface Oxidation Catalytic Reactions

6.1.3Plasmon Exciton Coupling of Ag NPsTiO2 Film
Hybrids Studied by SERS Spectroscopy

6.1.4Plasmon Exciton Coupling of Ag NPsTiO2 Film
Hybrids for Surface Oxidation Catalytic Reactions
under Various Environments

6.2Plasmon Exciton Coupling Interaction for Surface Reduction
Catalytic Reactions

6.2.1Plasmon Exciton Coupling of Monolayer MoS2Ag NPs
Hybrids for Surface Reduction Catalytic Reactions

6.2.2Ultrafast Dynamics of Plasmon Exciton Coupling
Interaction of GAg NWs Hybrids for Surface
Reduction Catalytic Reactions

6.2.3Surface Reduction Catalytic Reactions on GSERS in
Electrochemical Environment

6.3Unified Treatment for Plasmon Exciton Codriven Reduction
and Oxidation Reactions

CHAPTER 7Plasmon Exciton Coupling Interaction by Femtosecond
PumpProbe Transient Absorption Spectroscopy
7.1FemtosecondResolved Plasmon Exciton Coupling
Interaction of GAg NWs Hybrids

7.1.1FemtosecondResolved Plasmonic Dynamics of
Ag NWs

7.1.2FemtosecondResolved Plasmonic Dynamics of
Single Layer Graphene

7.1.3FemtosecondResolved Plasmonic Dynamics of
Plasmon Exciton Coupling Interaction of GAg
NWs Hybrids

7.2Physical Mechanism on Plasmon Exciton Coupling Interaction
Revealed by Femtosecond PumpProbe Transient Absorption
Spectroscopy

CHAPTER 8Electrically Enhanced Plasmon Exciton Coupling
Interaction for Surface Catalytic Reactions
8.1Electrooptical Synergy on Plasmon ExcitonCodriven Surface
Reduction Catalytic Reactions

8.1.1Plasmon Exciton Coupling Interaction of Monolayer
GAg NPs

8.1.2Electrical Properties of Plasmon Exciton
Coupling Device

8.1.3Plasmon ExcitonCodriven Surface Reduction
Catalytic Reactions

8.1.4BiasVoltageDependent Plasmon Exciton Codriven
Surface Reduction Catalytic Reactions

8.1.5GateVoltageDependent Plasmon Exciton Codriven
Surface Reduction Catalytic Reactions


8.2Electrically Enhanced Hot Hole Driven Surface Oxidation
Catalytic Reactions

CHAPTER 9Plasmon Waveguide Driven Chemical Reactions

9.1Plasmon Waveguide for Remote Excitation

9.1.1Features of Remote Excitation SERS and Early
Application

9.1.2Remote Excitation Plasmon Driven Chemical
Reactions

9.2Remote Excitation PolarizationDependent Surface
Photochemical Reactions by Plasmon Waveguide

9.3RemoteExcitation TimeDependent Surface Catalytic
Reactions by Plasmon Waveguide

CHAPTER 10Plasmon Driven Dissociation

10.1Resonant Dissociation of Surface Adsorbed Molecules by
Plasmonic Nanoscissors

10.2Plasmonic Nanoscissors for Molecular Design

10.3Plasmon Driven Dissociation of H2

10.3.1Plasmon Driven Dissociation of H2 on Au

10.3.2Plasmon Driven Dissociation of H2 on Aluminum
Nanocrystal

10.4Plasmon Driven Dissociation of N2

10.5Plasmon Driven Water Splitting

10.5.1Plasmon Driven Water Splitting under Visible
Illumination

10.5.2An autonomous photosynthetic device of
Plasmon Driven Water Splitting

10.6Plasmon Driven Dissociation of CO2

10.7RealSpace and RealTime Observation of a Plasmon
Induced Chemical Reactions of a Single Molecule

10.8Competition between Reactions and Degradation Pathways
in Plasmon Driven Photochemistry

CHAPTER 11Summary and Outlook

Acknowledgements

References

本目录推荐