《广义主成分分析算法及应用》主要讨论了系统信号广义主成分分析方法及应用情况。全书可分为三部分:部分包括概述和基础理论,主要介绍广义主成分分析的概念、外研究现状,以及与广义主成分分析密切相关的矩阵理论、优化理论和神经网络等理论基础;第二部分研究多种广义主成分分析方法,该部分是《广义主成分分析算法及应用》的核心内容,重点介绍广义主成分分析、成对广义主成分分析、耦合广义主成分分析、确定性离散时间系统、双目的广义主成分分析、奇异主成分分析等内容;第三部分研究广义主成分分析方法的应用,主要讨论在信号处理、图像恢复和模式识别与分类等领域的应用。《广义主成分分析算法及应用》核心内容十分新颖,均为近年来作者们发表在IEEE信号处理、神经网络与学习系统等汇刊上的长文组成编辑提炼而成,是基于神经网络和优化理论的特征信息提取领域研究和应用的新进展。《广义主成分分析算法及应用》适合于信息科学与技术(电子、通信、自动控制、计算机、系统工程、模式识别、信号处理等)各学科有关教师、研究生和科技人员教学、自学或进修之用。