注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学数学医学高等数学(第四版)

医学高等数学(第四版)

医学高等数学(第四版)

定 价:¥49.00

作 者: 马建忠 著
出版社: 科学出版社
丛编项: “十二五”普通高等教育本科国家级规划教材
标 签: 暂缺

购买这本书可以去


ISBN: 9787030600509 出版时间: 2019-07-01 包装: 平装
开本: 16开 页数: 283 字数:  

内容简介

  《医学高等数学(第四版)》依据普通高等医药院校数学教学要求编写而成。《医学高等数学(第四版)》讲述了微积分、常微分方程、概率论及线性代数等方面的基础知识,重点突出了基本概念、基本理论和数学方法。《医学高等数学(第四版)》结合具体的医药学问题给出了例题和习题,并介绍了借助计算机软件,用数学方法处理医学实际问题。

作者简介

暂缺《医学高等数学(第四版)》作者简介

图书目录

目录
第四版前言
第一章 函数、极限与连续 1
1.1* 函数 1
1.1.1 函数的概念 1
1.1.2 函数的特性 3
1.1.3 初等函数 5
1.1.4 分段函数和反函数 9
1.2 函数的极限 10
1.2.1 数列极限 10
1.2.2 函数极限 12
1.2.3 无穷小量 14
1.2.4 极限的运算 16
1.2.5 无穷小量的比较 20
1.2.6* 用Matlab软件观察极限动态变化趋势 21
1.3 函数的连续性 21
1.3.1 函数连续性的概念 21
1.3.2 间断点 23
1.3.3 初等函数的连续性 25
1.3.4 闭区间上连续函数的性质 26
小结 27
习题 28
第二章 一元函数微分学 32
2.1 导数的概念 32
2.1.1 两个变化率问题 32
2.1.2 导数的定义 33
2.1.3 导数的几何意义 35
2.1.4 函数的连续性与可导性的关系 36
2.2 导数的运算 36
2.2.1 几个基本初等函数的导数 37
2.2.2 导数的四则运算法则 38
2.2.3 复合函数和隐函数求导法 39
2.2.4 对数求导法 42
2.2.5 反函数求导法 43
2.2.6 高阶导数 44
2.3 微分 45
2.3.1 微分的定义 45
2.3.2 微分的几何意义 46
2.3.3 微分的计算 46
2.3.4 微分在误差估计、近似计算及医学中的应用 47
2.4 导数的应用 49
2.4.1 拉格朗日中值定理 49
2.4.2 洛必达(L'Hospital)法则 51
2.4.3 函数增减性和函数的极值及医学应用 53
2.4.4 函数的凹凸性及拐点 61
2.4.5 几个医学常用函数图形的描绘 64
2.4.6* Matlab软件作平面函数图形 67
小结 68
习题 68
第三章 一元函数积分学 73
3.1 不定积分 73
3.1.1 不定积分的概念 73
3.1.2 不定积分的基本公式和运算法则 76
3.2 不定积分的计算 78
3.2.1 换元积分法 78
3.2.2 分部积分法 83
3.2.3* 有理函数积分简介 84
3.2.4 积分表的使用 87
3.3 定积分 87
3.3.1 定积分的概念 87
3.3.2 定积分的性质 91
3.4 定积分的计算 93
3.4.1 微积分基本定理 93
3.4.2 定积分的换元积分法 96
3.4.3 定积分的分部积分法 98
3.4.4 定积分在医药学等自然科学中的应用 99
3.5 广义积分 106
3.5.1 无穷区间上的广义积分 106
3.5.2* 无界函数的广义积分 108
小结 110
习题 110
第四章 多元函数微分学 117
4.1 多元函数、极限与连续 117
4.1.1 空间解析几何简介 117
4.1.2 多元函数概念 124
4.1.3 二元函数的极限与连续 126
4.2 偏导数与全微分 127
4.2.1 偏导数及其医药学应用 127
4.2.2 全微分 130
4.2.3 高阶偏导数 132
4.3 多元复合函数的求导法则 133
4.3.1 复合函数的求导法则 133
4.3.2 隐函数的求导法则 136
4.4 多元函数的极值 137
4.4.1 二元函数极值定义 137
4.4.2 二元函数的极值定理 137
4.4.3 求无约束条件极值的方法及其医药等方面的应用 138
4.4.4* 求有约束条件的极值方法及其医药等方面的应用 140
小结 141
习题 141
第五章 多元函数积分学 145
5.1 二重积分的概念和性质 145
5.1.1 二重积分的概念 145
5.1.2 二重积分的性质 149
5.2 二重积分的计算 150
5.2.1 在直角坐标系下二重积分的计算 150
5.2.2 在极坐标系下二重积分的计算 156
5.3 二重积分的简单应用 160
5.3.1 几何和医药上的应用 160
5.3.2 物理及力学上的应用 162
小结 165
习题 165
第六章 常微分方程 168
6.1 微分方程的基本概念 168
6.2 一阶微分方程及其医药学应用 170
6.2.1 可分离变量的微分方程 170
6.2.2 一阶线性微分方程 175
6.3 二阶微分方程 180
6.3.1 几种可降阶的二阶微分方程 180
6.3.2 二阶线性常系数齐次方程及其医学应用 183
6.4* 用Matlab软件解二阶常系数非齐次微分方程 188
小结 188
习题 189
第七章 概率论基础及其医药学应用 192
7.1 随机事件及其概率 192
7.1.1 随机事件 192
7.1.2 事件关系及运算 193
7.1.3 随机事件的概率 195
7.2 概率基本运算法则及其应用 198
7.2.1 概率的加法定理 198
7.2.2 条件概率和乘法公式 199
7.2.3 事件的独立性 200
7.2.4 全概率公式与贝叶斯公式及其医学诊断 202
7.3 随机变量及其概率分布 206
7.3.1 随机变量 206
7.3.2 离散型随机变量的概率分布和连续型随机变量的概率密度函数 206
7.3.3 随机变量的分布函数 210
7.3.4 五种常见的随机变量分布 213
7.4 随机变量的数字特征 219
7.4.1 随机变量的数学期望及其性质 219
7.4.2 随机变量的方差及其性质 223
7.5* 大数定律和中心极限定理 226
7.5.1 大数定律 227
7.5.2 中心极限定理 227
小结 228
习题 228
第八章 线性代数初步 233
8.1 行列式及其医学应用 233
8.1.1 行列式的概念和计算 233
8.1.2 行列式的性质与计算 237
8.1.3* 用克拉默(Cramer)法则解线性方程组及其医学应用 240
8.2 矩阵 242
8.2.1 矩阵的概念 242
8.2.2 矩阵的运算及其医学应用 244
8.2.3 矩阵的逆 250
8.3 矩阵的初等变换与线性方程组 252
8.3.1 矩阵的秩和初等变换 252
8.3.2 利用初等变换求逆矩阵 254
8.3.3 矩阵的初等行变换与线性方程组 255
8.3.4* 用Matlab软件解线性方程组 259
8.4 矩阵的特征值与特征向量 260
8.4.1 矩阵的特征值与特征向量的概念 260
8.4.2 用Matlab软件求特征值和特征向量 262
小结 263
习题 263
附录 268
Ⅰ.简单不定积分表 268
Ⅱ.希腊字母表 275
Ⅲ.泊松分布表 275
Ⅳ.标准正态分布表 281
Ⅴ.常见三角公式提示 282
Ⅵ.Matlab中的运行环境和变量运算简介 283
习题参考答案 284

本目录推荐