注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学数学Lipschitz边界上的奇异积分与Fourier理论(英文版)

Lipschitz边界上的奇异积分与Fourier理论(英文版)

Lipschitz边界上的奇异积分与Fourier理论(英文版)

定 价:¥168.00

作 者: 钱涛,李澎涛 著
出版社: 科学出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787030618399 出版时间: 2019-07-01 包装: 精装
开本: 16开 页数: 324 字数:  

内容简介

  The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and sur faces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dun ford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications.

作者简介

暂缺《Lipschitz边界上的奇异积分与Fourier理论(英文版)》作者简介

图书目录

Contents
1 Singular Integrals and Fourier Multipliers on Infinite Lipschitz Curves 1
1.1 Convolutions and Differentiation on Lipschitz Graphs 2
1.2 Quadratic Estimates for Type co Operators 6
1.3 Fourier Transform and the Inverse Fourier Transform on Sectors 6
1.4 Convolution Singular Integral Operators on the Lipschitz Curves 22
1.5 Lp-Fourier Multipliers on Lipschitz Curves 29
1.6 Remarks 41
References 42
2 Singular Integral Operators on Closed Lipschitz Curves 43
2.1 Preliminaries 44
2.2 Fourier Transforms Between S and PS(π) 48
2.3 Singular Integrals on Starlike Lipschitz Curves 54
2.4 Holomorphic H*-Functional Calculus on Starlike Lipschitz Curves 61
2.5 Remarks 65
References 65
3 Clifford Analysis, Dirac Operator and the Fourier Transform 67
3.1 Preliminaries on Clifford Analysis 67
3.2 Monogenic Functions on Sectors 74
3.3 Fourier Transforms on the Sectors 79
3.4 Mobius Covariance of Iterated Dirac Operators 94
3.5 The Fueter Theorem 100
3.6 Remarks 114
References 115
4 Convolution Singular Integral Operators on Lipschitz Surfaces 117
4.1 Clifford-Valued Martingales 117
4.2 Martingale Type T(b) Theorem 125
4.3 Clifford Martingale O-Equivalence Between S(f) and f* 140
4.4 Remarks 147
References 147
5 Holomorphic Fourier Multipliers on Infinite Lipschitz Surfaces 149
5.1 Singular Convolution Integrals on Infinite Lipschitz Surfaces 149
5.2 H*-Functional Calculus of Functions of n Variables 156
5.3 H*-Functional Calculus of Functions of One Variable 162
References 166
6 Bounded Holomorphic Fourier Multipliers on Closed Lipschitz Surfaces 169
6.1 Monomial Functions in Rn 169
6.2 Bounded Holomorphic Fourier Multipliers 186
6.3 Holomorphic Functional Calculus of the Spherical Dirac Operator 200
6.4 The Analogous Theory in Rn 203
6.5 Hilbert Transforms on the Sphere and Lipschitz Surfaces 206
6.6 Remarks 219
References 219
7 The Fractional Fourier Multipliers on Lipschitz Curves and Surfaces 221
7.1 The Fractional Fourier Multipliers on Lipschitz Curves 224
7.2 Fractional Fourier Multipliers on Starlike Lipschitz Surfaces 239
7.3 Integral Representation of Sobolev-Fourier Multipliers 254
7.4 The Equivalence of Hardy-Sobolev Spaces 270
7.5 Remarks 272
References 273
8 Fourier Multipliers and Singular Integrals on Cn 275
8.1 A Class of Singular Integral Operators on the n-ComplexUnit Sphere 275
8.2 Fractional Multipliers on the Unit Complex Sphere 289
8.3 Fourier Multipliers and Sobolev Spaces on Unit Complex Sphere 298
References 300
Bibliography 303
Index 305

本目录推荐