《泛函分析讲义》系统讲授泛函分析的基本内容,共分为11章。全书内容形成一个有层次感、节奏明快的体系,按章节顺序,分别讲解点集拓扑基础知识、度量空间的完备性和紧性理论、赋范空间理论、Hilbert空间理论、函数空间理论(主要涉及Ascoh定理和Stone-Weierstrass定理)、Baire定理及其应用(包括Banach-Steinhaus定理以及开映射和闭图像定理等泛函分析中基本的定理)、Hahn-Banach定理(在该部分也介绍弱拓扑和弱拓扑的概念与相应理论)、Banach空间的对偶理论、正则Borel测度和Riesz表示定理、紧算子的谱理论。《泛函分析讲义》内容主题特别明确,各章篇幅简练、理论完备。并且,《泛函分析讲义》提供的习题从内容到形式也极具特色,部分习题反映了近期理论研究的热点问题。《泛函分析讲义》可作为综合性大学数学类专业本科生和研究生“泛函分析”课程的教材和参考书,也可供部分数学及相邻学科研究人员参考。