本书全面而系统地介绍了具有生物学背景的时空编码脉冲耦合神经网络的理论及应用。本书共9章,第1、2章介绍时空编码人工神经网络和空间编码人工神经网络的异同,时空编码脉冲耦合神经网络的基本理论、应用及研究现状,脉冲耦合神经网络的动态行为,以及更便于用硬件实现的单位连接模型;第3~7章介绍脉冲耦合神经网络在图像处理、特征提取、模式识别和优化等方面的理论及应用研究,融合数学形态学、模糊数学、粗集和粒子滤波等理论,并由数学形态学得到脉冲耦合神经网络图像处理通用设计方法,具体介绍了近二十种相关应用;第8、9章介绍基于脉冲耦合神经网络的仿生建模理论及应用,将脉冲耦合神经网络和注意力选择相融合,充分贯彻拓扑性质知觉理论,采用同步振荡特征捆绑理论,引入光流场方法,分别建立方位检测、心理学注意力选择、神经生物学注意力选择仿生模型,并应用于目标跟踪等方面。