注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术自然科学数学自守函数理论讲义 第二卷

自守函数理论讲义 第二卷

自守函数理论讲义 第二卷

定 价:¥168.00

作 者: (德)弗里克(德)克莱因 著;(美)迪普雷 译
出版社: 高等教育出版社
丛编项:
标 签: 科学与自然 数学

购买这本书可以去


ISBN: 9787040478396 出版时间: 2017-10-01 包装:
开本: 页数: 563 字数:  

内容简介

  Felix Klein著名的Erlangen纲领使得群作用理论成为数学的核心部分。在此纲领的精神下,Felix Klein开始一个伟大的计划,就是撰写一系列著作将数学各领域包括数论、几何、复分析、离散子群等统一起来。他的一本著作是《二十面体和十五次方程的解》于1884年出版,4年后翻译成英文版,它将三个看似不同的领域——二十面体的对称性、十五次方程的解和超几何函数的微分方程紧密地联系起来。之后Felix Klein和Robert Fricke合作撰写了四卷著作,包括椭圆模函数两卷本和自守函数两卷本。弗里克、克莱因著季理真主编迪普雷译的《自守函数理论讲义(第2卷)(英文版)(精)》是对一本著作的推广,内容包含Poincare和Klein在自守形式的高度原创性的工作,它们奠定了Lie群的离散子群、代数群的算术子群及自守形式的现代理论的基础,对数学的发展起着巨大的推动作用。

作者简介

  [德] 弗里克 [德] 克莱因 著;[美] 迪普雷 译

图书目录

Preface

Part I Narrower theory of the single-valued automorphic functions of one variable

Concept, existence and fundamental properties of the automorphic functions

1.1 Definition of the automorphic functions

1.2 Production of an elementary potential of the second kind belonging

to the fundamental domain

1.3 Production of automorphic functions of the group F

1.4 Mapping of the fundamental domain P onto a closed Riemann surface

1.5 The totality of all automorphic functions belonging to a group F and their principal properties

1.6 Classification and closer study of the elementary automorphic functions

1.7 Preparations for the classification of the higher automorphic functions

1.8 Classification and closer study of the higher automorphic functions ...

1.9 The integrals of the automorphic models

1.10 General single-valuedness theorem. Application to linear differential equations

1.11 as a linearly polymorphic function. The fundamental problem

1.12 Differential equations of the third order for the polymorphic functions.

1.13 Generalization of the concept of automorphic functions

Form-theoretic discussions for the automorphic models of genus zero

2.1 Shapes of the fundamental domains for the models of genus zero

2.2 Recapitulation of homogeneous variables, substitutions and groups...

2.3 General definition of the automorphic forms

2.4 The differentiation process and the principal forms of the models of genus zero

2.5 The family of prime forms and the ground forms for automorphic models with p = 0

2.6 Behavior of the automorphic forms q0d ((1,(2) with respect to the group generators

2.7 The ground forms for the groups of the circular-arc triangles

2.8 The single-valued automorphic forms and their multiplicator systems .

2.9 The number of all mtflfiplicator systems M for a given group F

2.10 Example for the determination of the number of the multiplicator systems M, the effect of secondary relations

2.11 Representation of all unbranched automorphic forms

2.12 Existence theorem for single-valued forms q0d((1,(2) for given multiplicator system M

2.13 Relations between multiplicator systems inverse to one another.

2.14 Integral forms and forms with prescribed poles

2.15 The (1, (2 as linearly-polymorphic forms of the zl, z2

2.16 Other forms of the polymorphic forms. History

2.17 Differential equations of second order for the polymorphic forms of zero dimension

2.18 Invariant form of the differential equation for the polymorphic forms (1, (2

2.19 Series representation of the polymorphic forms in the case n = 3

2.20 Representation of the polymorphic forms in the case n = 3 by definite integrals

Theory of Poincar6 series with special discussions for the models of genus zero

3.1 The approach to the Poincar6 series

3.2 First convergence study of the Poincar6 series

3.3 Behavior of the Poincar6 series at parabolic cusps

3.4 The Poincar6 series of (-2)nd dimension for groups F with boundary curves

3.5 The Poincar6 series of (-2)nd dimension for principal-circle groups With isolatedly situated boundary points

3.6 Convergence of the Poincar6 series of (-2)nd dimension for certain groups Without boundary curves and Without principal circle

3.7 Second convergence study in the principal-circle case. Continuous dependence of the Poincar6 series on the group moduli

3.8 Poles of the Poincar6 series and the possibility of its vanishing identically. Discussion for the case p = 0

3.9 Construction of one-pole Poincar6 series

3.10 One-poled series with poles at elliptic vertices

3.11 Introduction of the elementary forms ~ ((1, (2; ~ 1, ~2)

3.12 Behavior of the elementary form ~2((1,(2;(1,(2) at a parabolic cusp ( ..

3.13 Behavior of the elementary forms upon exercise of substitutions of the group F on (1, (2. Discussions for the models of genus p —— 0

3.14 Concerning the representability of arbitrary automorphic forms of genus zero by the elementary forms and the Poincar6 series

The automorphic forms and their analytic representations for models of arbitrary genus

4.1 Recapitulation concerning the groups of arbitrary genus p and their generation

4.2 Recapitulation and extension of the theory of the primeform for an arbitrary algebraic model

4.3 The polymorphic forms (1, (2 for a model of arbitrary genus p

4.4 Differential equations of the polymorphic functions and forms for models with p > 0

4.5 Representation of all unbranched automorphic forms of a group F of arbitrary genus by the prime-and groundforms

4.6 The single-valued automorphic forms and their multiplicator systems for a group of arbitrary genus

4.7 Existence of the single-valued forms for a given multiplicator system in the case of an arbitrary genus

4.8 More on single-valued automorphic forms for arbitrary p. The p forms z~-2((1,~'2)

4.9 Concept of conjugate forms. Extended Riemann-Roch theorem and applications of it

4.10 The Poincard series and the elementary forms for p. Unimultiplicative forms

4.11 Two-poled series of (——2)nd dimension and integrals of the 2nd kind for automorphic models of arbitrary genus p

4.12 The integrals of the first and third kinds. Product representation for the primeform ~

4.13 On the representability of the automorphic forms of arbitrary genus p by the elementary forms and the Poincard series

4.14 Closing remarks

Part II Fundamental theorems concerning the existence of polymorphic functions on Riemann surfaces

1 Continuity studies in the domain of the principal-circle groups

1.1 Recapitulation of the polygon theory of the principal-circle groups

1.2 The polygon continua of the character (0, 3)

1.3 The polygon continua of the character (0, 4)

1.4 The polygon continua of the character (0, n)

1.5 Another representation of the polygon continua of the character (0,4) .

1.6 The polygon continua of the character (1,1)

1.7 The polygon continua of the character (p, n)

1.8 Transition from the polygon continua to the group continua

1.9 The discontinuity of the modular group

1.10 The reduced polygons of the character (1,1)

1.11 The surface q)3 of third degree coming up for the character (1,1)

1.12 The discontinuity domain of the modular group and the character (1,1)

1.13 Connectivity and boundary of the individual group continuum of the character (1,1)

1.14 The reduced polygons of the character (0, 4)

1.15 The surfaces ~a of the third degree coming up for the character (0,4) ..

1.16 The discontinuity domain of the modular group and the group continua of the character (0, 4)

1.17 Boundary and connectivity of the individual group continuum of the character (0, 4)

1.18 The normal and the reduced polygons of the character (0, n)

1.19 The continua of the reduced polygons of the character (0, n) for given vertex invariants and fixed vertex arrangement

1.20 The discontinuity domain of the modular group and the group continua of the character (0, n)

1.21 The group continua of the character (p, n)

1.22 Report on the continua of the Riemann surfaces of the genus p

1.23 Report on the continua of the symmetric Riemann surfaces of the genus p

1.24 Continuity of the mapping between the continuum of groups and the continuum of Riemann surfaces

1.25 Single-valuedness of the mapping between the continuum of groups and the continuum of Riemann surfaces

1.26 Generalities on the continuity proof of the fundamental theorem in the domain of the principal-circle groups

1.27 Effectuation of the continuity proof for the signature (0, 3; ll, la)

1.28 Effectuation of the continuity proof for the signature (0, 3; ll)

1.29 Effectuation of the continuity proof for the signature (1,1; 11)

1.30 Effectuation of the continuity proof for the signature (0, 3)

1.31 Representation of the three-dimensional continua Bg and Bf for the signature (1,1)

1.32 Effectuation of the continuity proof for the signature (1,1)

Proof of the principal-circle and the boundary-circle theorem

2.1 Historical information concerning the direct methods of proof of the fundamental theorems

2.2 Theorems on logarithmic potentials and Green's functions

2.3 More on the solution of the boundary-value problem

2.4 The Green's function of a simply connected domain

2.5 Two theorems of Koebe

2.6 Production of the covering surface F~ in the boundary-circle case

2.7 Production of the covering surface in the principal-circle case

2.8 The Green's functions of the domain Fv and their convergence in the principal-circle case

2.9 Mapping of the covering surface onto a circular disc. Proof of the principal-circle theorem

2.10 Introduction of new series of functions in the boundary-circle case

2.11 Connection of the limit functions ur, u" with one another and with Green's functions u~

2.12 Mapping of the covering surface by means of the function

Proof of the boundary-circle theorem

Proof of the reentrant cut theorem

3.1 Theorems on schlicht infinite images of a circular surface

3.2 Theorems on schlicht finite models of a circular surface

3.3 The distortion theorem for circular domains

3.4 The distortion theorem for arbitrary domains

3.5 Consequences of the distortion theorem

3.6 Production of the covering surface Foo for a Riemann surface provided with p reentrant cuts

3.7 Mapping of the surface Fn onto a schlicht domain for special reentrant cuts

3.8 Mapping of the surface Fn onto a schlicht domain for arbitrary reentrant cuts

3.9 Introduction of a system of analytic transformations belonging to the domain Pn

3.10 Application of the distortion theorem to the domain Pn

3.11 Application of the consequences of the distortion theorem to the domain Pn

3.12 Effectuation of the convergence proof of the functions r/n (z)

3.13 Proof of the linearity theorem

3.14 Proof of the unicity theorem. Proof of the reentrant cut theorem

3.15 Koebe's proof of the general Kleinian fundamental theorem

An addition to the transformation theory of automorphic functions

A. 1 General approach to the transformation of single-valued automorphic functions

A.2 The arithmetic character of the group of the signature (0, 3; 2, 4, 5)

A.3 Introduction of the transformation of third degree

A.4 Setting up the transformation equation of tenth degree

A.5 The Galois group of the transformation equation and its cyclic subgroups

A.6 The non-cyclic subgroups of the Ga60 and the extended G720

A.7 The two resolvents of sixth degree of the transformation equation

A.8 The discontinuity domains of the F15 and F30 belonging to the octahedral and tetrahedral groups

A.9 The two resolvents of the 15th degree of the transformation equation ..

A.10 Note on the grups F20 belonging to the ten conjugate G18

A.11 The Riemann surface of the Galois resolvent of the transformation equation

A.12 The curve C6 in the octahedral coordinate system

A.13 The curve C6 in the icosahedral coordinate system

A.14 The curve C6 in the harmonic coordinate system

A.15 The real traces of the C6 and the character of the points a, b, c

A.16 Further geometrical theorems on the collineation group G360

A.17 The Galois resolvent of the transformation equation

A.18 The solution of the resolvents of 6th and 15th degree

A.19 Solution of the transformation equation of 10th degree

Commentaries

1 Commentary by Richard Borcherds on Elliptic Modular Functions

2 Commentary by leremy Gray

3 Commentary by William Harvey on Automorphic Functions

4 Commentary by Barry Mazur

5 Commentary by Series-Mumford-Wright

6 Commentary by Domingo Toledo

7 Commentaries by Other Mathematicians


本目录推荐